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Foreword

I am honored by Professor Sharpe’s request to write a forward to his beau-
tiful book.

In his preface he asks the innocent question, “Why is differential ge-
ometry the study of a connection on a principal bundle?” The answer is
of course very simple; because Euclidean geometry studies a connection

on a principal bundle, and all geometries are in a sense generalizations of
Euclidean geometry.

In fact, let E™ be the Euclidean space of n dimensions. We call an or-

thonormal frame z, ey, ...,e, (n+1 vectors), where z is the position vector
and e; have the scalar products

(€, €5) = by, 1<4,j<n.

Then the space of all orthonormal frames is a principal fiber bundle with
group O(n) and base space E™, the projection being defined by mapping
z, e1,...,en to . The equations

de;= Y wiye;, 1<i<n,
1<j<n

define the Maurer-Cartan forms w;;, with
wij +wji; =0, 1<4,5<n.
They satisfy the Maurer—Cartan equations

dw;; = Z Wik A Wy, 1<i,j<n.
1<k<n
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This is Euclidean geometry by moving frames. The w;; define the paral-
lelism or connection. The Maurer—-Cartan equations say that the connection
is flat. This formulation has a great generalization.

As in all disciplines, the development of differential geometry is tortuous.
The basic notion is that of a manifold. This is a space whose coordinates
are defined up to some transformation and have no intrinsic meaning. The
notion is original, bold, and powerful. Naturally, it took some time for the
concept to be absorbed and the technology to be developed. For example,
the great mathematician Jacques Hadamard “felt insuperable difficulty . ..
in mastering more than a rather elementary and superficial knowledge of
the theory of Lie groups,” a notion based on that of a manifold [1]. Also,
it took Einstein seven years to pass from his special relativity in 1908 to
his general relativity in 1915. He explained the long delay in the following
words: “Why were another seven years required for the construction of the
general theory of relativity? The main reason lies in the fact that it is not so
easy to free oneself from the idea that coordinates must have an immediate
metrical meaning.” [2]

On the technology side the breakthrough was achieved by the tensor
analysis of Ricci calculus. The central theme was Riemannian geometry,
which Riemann formulated in 1854. Its fundamental problem is the “form
problem”: To decide when two Riemannian metrics differ by a change in
coordinates. This problem was solved by E. Christoffel and R. Lipschitz
in 1870. Christoffel’s solution introduces a covariant differentiation, which
could be given an elegant geometrical setting through the parallelism of
Levi-Civita. Tensor analysis is extremely effective and has dominated dif-
ferential geometry for a century.

Another technical tool, which has not quite received the recognition it
deserves, is the exterior differential calculus of Elie Cartan. This was intro-
duced by Cartan in 1922, following the work of Frobenius and Darboux. All
the exterior differential forms on a manifold form a ring. It depends only
on the differentiable structure of the manifold and not on any additional
structure such as a Riemannian metric or an affine connection. Topolog-
ically it leads to the de Rham theory. Less known is its effectiveness in
treating local problems.

A fundamental question is the equivalence problem for G-structures:
Given, on an n-dimensional manifold with coordinates u‘, a set of linear
differential forms w?, a similar set w*? with coordinates u*?, and a subgroup
G C Gl(n,R), determine the conditions under which there exist functions

wd =uM (. um), 1<4,5<n,

such that after substitution the w*/ differ from the w? by a transformation
of G. The form problem in Riemannian geometry is the case G = O(n).
The solution of the form problem by Cartan’s method of equivalence
leads automatically to the tensor analysis. Thus, the method of equiva-
lence is more general. In the case G = O(n), this leads to the Levi-Civita
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parallelism and the Riemannian geometry. In this way Euclidean geome-
try generalizes to Riemannian geometry. For a general G, the solution of
the equivalence problem is not always easy (cf. the Preface), although it is
proved that it can always be achieved in a finite number of steps. Philo-
sophically nice problems have nice answers.

Klein geometry can be developed through the Maurer-Cartan equations.
The generalization of the above discussion, from O(n) to G, gives Cartan’s
generalized spaces, essentially a connection in a principal bundle.

A fundamental problem is the relation of the local geometry with the
global properties of the spaces in question. Such a result is the so-called
Chern—Weil theorem that the characteristic classes can be represented by
differential forms constructed explicitly from the curvature. The simplest
result is the Gauss—Bonnet formula.

I wish to take this occasion to mention some recent developments on
Finsler geometry [3]. This is the geometry of a very simple integral and
was discussed in problem 23 of Hilbert’s Paris address in 1900. By a proper
interpretation of the analytical results, Finsler geometry now assumes a
very simple form showing it to be a family of geometries quite analogous
to the Riemannian case.

Differential geometry offers an open vista of manifolds with structures,
finite or infinite dimensional. There are also simple and difficult low-dimen-
sional problems, of the garden variety. If one switches between the two, life
is indeed very enjoyable.

It is a great mystery that the infinitesimal calculus is a source of such
depth and beauty.

References

(1] J. Hadamard, Psychology of Invention in the Mathematical Field,
Princeton University Press, Princeton, 1945, p. 115.

[2] A. Einstein, Autobiographical Notes, in Albert Einstein: Philosopher
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[3] D. Bao and S.S. Chern, On a notable connection in Finsler geometry,
Houston J. Math. 19 (1993), 135-180.
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Preface

This book is a study of an aspect of Elie Cartan’s contribution to the
question “What is geometry?”

In the last century two great generalizations of Euclidean geometry ap-
peared. The first was the discovery of the non-Euclidean geometries. These
were organized into a coherent whole by Felix Klein, who recognized them
as various examples of coset spaces G/H of Lie groups. In this book we refer
to these latter as Klein geometries. The second generalization was Georg
Riemann’s discovery of what we now call Riemannian geometry. These two
theories seemed largely incompatible with one other.}

In the early 1920s Elie Cartan, one of the pioneers of the theory of
Lie groups, found that it was possible to obtain a common generalization
of these theories, which he called espaces généralizés and we call Cartan
geometries (see diagram).

Euclidean generalization Klein
Geometry > Geometries

generali- generali-
zation zation

Riemannian generalization ~ Cartan
Geometry > Geometries

'The only relationship was the “accident” that some of the non-Euclidean
geometries could be regarded as special cases of Riemannian geometries.
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Looking at this diagram vertically, we can say that just as a Riemannian
geometry may be regarded, locally, as modeled on Euclidean space but
made “lumpy” by the introduction of a curvature, so a Cartan geometry
may be regarded, locally, as modeled on one of the Klein geometries but
made “lumpy” by the introduction of curvature appropriate to the model
in question. Looking at the same diagram horizontally, a Cartan geometry
may be regarded as a non-Euclidean analog of Riemannian geometry.

Cartan actually gave the first example of a Cartan geometry more than
a decade earlier, in the remarkable tour de force [E. Cartan, 1910]. In that
paper he considered the case of a two-dimensional distribution on a five-
dimensional manifold. He showed that such a distribution determined, and
was determined by, a Cartan geometry modeled on the homogeneous space
G2/H, where H is a certain nine-dimensional subgroup of the fourteen-
dimensional exceptional Lie group G2. This process of associating a Car-
tan geometry to a raw geometric entity (the distribution) is an example
of “solving the equivalence problem” for the entity in question. Although
the solution of an equivalence problem is not always a Cartan geometry,
in many important cases it is. When it is, the invariants of the geometry
(curvature, etc.) are a priori invariants of the raw geometric entity. We rec-
ommend [R.B. Gardner, 1989] for an account of the method of equivalence.

To be a little more precise, a Cartan geometry on M consists of a pair
(P,w), where P is a principal bundle H — P — M and w, the Cartan
connection, is a differential form on P. The bundle generalizes the bundle
H — G — G/H associated to the Klein setting, and the form w generalizes
the Maurer-Cartan form wg on the Lie group G. In fact, the curvature of
the Cartan geometry, defined as dw+ 3w, w], is the complete local obstruc-
tion to P being a Lie group.

One reason for the power of Cartan’s method comes from the fact that
these new geometries maintain the same intimate relation with Lie groups
that one sees in the case of homogeneous spaces. This means, for example,
that constructions in the theory of homogeneous spaces often generalize
in a simple manner to the general “curved” case of Cartan geometries.
It also means that the differential forms that appear are always related
to components of the Maurer-Cartan form of the Lie group, a context in
which their significance remains clear.

In the particular case of a Riemannian manifold M, Cartan’s point of
view offered a new and profound vantage point that is largely responsible
for the modern insistence on “doing differential geometry on the bundle P
of orthonormal frames over M.”

The history of the study of Cartan geometries is somewhat troubled. First
is the difficulty Cartan faced in trying to express notions for which there was
no truly suitable language.? Next is the widely noted difficulty in reading

*This difficulty was resolved with the introduction of the notion of a principal
bundle and of vector-valued forms on such a bundle.
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Cartan.® In his paper [C. Ehresmann, 1950] Charles Ehresmann gave for
the first time a rigorous global definition of a Cartan connection as a special
case of a more general notion now called an Ehresmann connection (or more
simply, a connection). For various reasons* the Ehresmann definition was
taken as the definitive one, and Cartan’s original notion went into a more
or less total eclipse for a long time. The beautiful geometrical origin and
insight connected with Cartan’s view were, for many, simply lost. In short,
although the Ehresmann definition gives us a good notion, it hides the real
story about why it is so good. In this connection, the following quotation
is interesting [S.S. Chern, 1979

The physicist C.N. Yang wrote [C.N. Yang, 1977]: “That non-
abelian gauge fields are conceptually identical to ideas in the
beautiful theory of fibre bundles, developed by mathematicians
without reference to the physical world, was a great marvel to
me.” In 1975 he mentioned to me: “This is both thrilling and
puzzling, since you mathematicians dreamed up these concepts
out of nowhere.”

Far from arising “out of nowhere,” the simple and compelling geometric
origin of a connection on a principal bundle is that it is a generalization
of the Maurer-Cartan form. Moreover, a study of the Cartan connection
itself can illuminate and unify many aspects of differential geometry.

Novelties

Aside from the fact that one cannot find a fully developed, modern ex-
position of Cartan connections elsewhere, what is new or different in this
book?

New Treatment

This book is written at a level that can be understood by a first- or second-
year graduate student. In particular, we include the relevant theory of man-
ifolds, distributions and Lie groups. For us, a manifold is, by definition, a

3To paraphrase Robert Bryant, “You read the introduction to a paper of
Cartan and you understand nothing. Then you read the rest of the paper and
still you understand nothing. Then you go back and read the introduction again
and there begins to be the faint glimmer of something very interesting.”

4 At that stage it was easier to read Ehresmann than Cartan. There was also
the attraction of a more general and global notion.
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locally Euclidean, paracompact Hausdorff space. This is the same as a lo-
cally Euclidean Hausdorff space each of whose components has a countable
basis.5 In particular, Lie groups are defined to be manifolds in this sense.
The result of Yamabe and Kuranishi ([H. Yamabe, 1950]) that a connected
subgroup of a Lie group is a Lie subgroup implies that any subgroup of a
Lie group is a Lie group in the present sense. The discussion of subman-
ifolds given in Chapter 1 is broad enough to include these subgroups as
submanifolds.

In our coverage of bundle theory, we emphasize the abstract principal
bundles rather than bundles of frames.® Of course, these two views are re-
ally equivalent. In the case of the “first-order” geometries, the equivalence is
quite simple. However, in the case of “higher-order” geometries, the choice
of the higher-order frames usually seems to be decided on a rather ad
hoc basis and can be complicated. Here the bundle approach gives a real
advantage, and the right choice of frames becomes clear (if needed) once
the bundle is understood. Another important advantage of working with
the bundles themselves is that they give a common language, facilitating
comparison between geometries and emphasizing the relation to the model
space. In this sense, comparing Cartan geometries is like comparing Klein
geometries.

Chapter 3 contains a complete and economical development of the Lie
group—Lie algebra correspondence based on the fundamental theorem of
non-abelian calculus. One of the novelties here is the characterization of
a Lie group as a manifold equipped with a Lie algebra-valued form on it
satisfying certain properties. This characterization prepares the reader for
the generalization to Cartan geometries in Chapter 5.

Finally, in Appendix B we explain how one manifold may roll with-
out slipping or twisting on another in Euclidean space. We also show how
this notion yields a differential system that contains both the Levi-Civita
connection and the Ehresmann connection on the normal bundle for a sub-
manifold of Euclidean space.

New Results

Let us move on to some results we believe are new. In Chapter 4 we in-
troduce the fundamental property of Klein geometries characterizing the
kernel of such a geometry. This result is used in Chapter 5 in an essential
way to show the equivalence of the base and bundle definitions of Cartan
geometries in the effective case. In Chapter 5 we introduce and classify
Cartan space forms. These geometries generalize the classical Riemannian

5The usual definition requires a manifold to have a countable basis (cf., e.g.,
[Boothby, W. 1986, p. 6]).

5In much the same way, one might emphasize an abstract Lie group rather
than a matrix group realizing it.

Preface xiii

space forms.” One important ingredient of this classification is the property
(apparently new) of a Cartan geometry called “geometric orientability.”
Another is the notion of “model mutation.” Finally, in Chapter 7 we give
a classification of the submanifolds of a Mobius geometry. This classifica-
tion is more general than that of [A. Fialkow, 1944] in that ours allows the
presence of umbilic points.

Prerequisites and Conventions

This book assumes very few prerequisites. The reader needs to be familiar
with some basic ideas of group theory, including the notion of a group
acting on a set. Results from the calculus of several variables, point set
topology, and the theory of covering spaces are used in various places, and
the long, exact sequence of homotopy theory is used once (at the end of
Chapter 5). Aside from this, most of the material is developed ab initio.
However, the reader is invited to shoulder some of the burden of the work
in that essential use is made of a few of the exercises. These exercises are
denoted by an asterisk to the right of the exercise number.

The numbering follows a single sequence throughout the book, with all
items (definitions, theorems, figures, etc.) in a single stream. Thus 4.3.2
refers to Chapter 4, Section 3, item 2. For references to items occurring in
the same chapter, we omit the chapter number, so that in Chapter 4, 4.3.2
becomes 3.2.

We use the following dictionary of symbols to denote the ends of various
items:

symbol  end of

definition
exercise
proof
example

L BNk

Although it will often be convenient for us to write column vectors as
row vectors, the reader should remember that all vectors are in fact column
vectors.

"In fact, this notion is general enough to immediately allow a description of
general symmetric spaces.
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Limitations

The reader will find no mention here of some basic topics in differential
geometry, such as Stokes’ theorem, characteristic classes, and complex ge-
ometries. Also, our approach to Lie theory is “elementary” in that we do
not discuss or use the classification theory of Lie groups, with its attendant
study of roots, weights, and representations.

Originally, we had wished to include more than the three examples of
Cartan geometries studied here; but in the end, the pressures of time, space,
and energy limited this impulse. The three geometries we do study are not
developed in complete analogy to each other. For example, the discussion
of immersed curves in a Mobius geometry in terms of the normal forms
given in Chapter 7 does of course have a Riemannian analog, but that is
not studied in this book. And one may study subgeometries of projective
geometries just as one studies subgeometries of Riemannian and Mébius
geometries, but we do not do so here. We have also resisted the impulse
to make a “dictionary” translating among the various versions of Cartan’s
view, Ehresmann’s view,® and the view expressed in [L.P. Eisenhart, 1964].
In the end, however, for those who are interested in it, it should be abun-
dantly clear how Cartan’s view does illuminate the others.

Some Personal Remarks

An author often writes a book in order to sort out his or her own under-
standing of the subject. This is the circumstance in the present case. When
I was an undergraduate, differential geometry appeared to me to be a study
of curvatures of curves and surfaces in R3. As a graduate student I learned
that it is the study of a connection on a principal bundle. I wondered what
had become of the curves and surfaces, and I studied topology instead.
The reawakening of my interest in this subject began in 1987 when Tom
Willmore very kindly wrote me a note thanking me for a preprint and men-
tioning his great interest in what is known as the Willmore conjecture (cf.
7.6). This led me once again to look at principal bundles and connections.
In particular, I wondered whether there was an intrinsically defined Ehres-
mann connection on a surface in S® that was invariant under the group
of Md6bius transformations of S3. It turns out there is no such connection.
However, after calculating normal forms for surfaces in the M&bius sphere
S3 (cf. [G. Cairns, R. Sharpe, and L. Webb, 1994]), it became clear to me
that there must be some other kind of invariantly defined structure inher-
ited on the surface from its embedding in S3. (In Chapter 7 it is shown

8See, however, the discussion in Appendix A dealing with the relationship
between Cartan and Ehresmann connections.
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that a Cartan connection is defined in this situation, and, in fact, Cartan
also knew this [E. Cartan, 1923].)

During this time it began to seem strange to me that Ehresmann connec-
tions play such a prominent role in modern differential geometry. In some
cases, such as the Levi—Civita connection, the connection is determined
by the geometry. In many cases, however, one makes use of an arbitrary
connection that one proves to exist by a general technique. This is the ap-
propriate point of view for the construction of the characteristic classes of
Chern and Pontryagin. There one may use any connection, since the aim
is to obtain topological invariants for which the particular choice of con-
nection does not matter. But these considerations seem to be at their base
topological rather than differential geometric. My innocent question, left
over from my undergraduate days, was “Why is differential geometry the
study of a connection on a principal bundle?” And I began, rather imper-
tinently, to ask this question at every opportunity, usually picking on some
unsuspecting differential geometer who did not know me very well.

During one of these sessions, Min Oo remarked that Elie Cartan had
considered connections with values in a Lie algebra larger than that of the
fiber.? Later I read, and translated,'® Cartan’s book [E. Cartan, 1935]. I
browsed through Cartan’s collected works and through those of his suc-
cessors and interpreters. It became clear to me that Cartan had a subtle
and really wonderful idea, which gives a fully satisfying explanation for the
modern, and approximately true, notion that differential geometry is the
study of an Ehresmann connection on a principal bundle. There seems to be
no treatment of these things in the standard texts on differential geometry.
In the few books where the Cartan connections are mentioned at all (e.g.,
[J. Dieudonné 1974], [W.A. Poor, 1981], and [M. Spivak, 1979]), they make
only a brief appearance, perhaps in the exercises or toward the end of the
book, and one is left with the impression that the notion is only a quaint
curiosity left over from bygone days. Six years ago I began to scribble some
notes about these things and to talk about them; after a number of months
had passed, I realized I was writing a book on the subject.

I would like to thank everyone who has had an influence on this book.
In addition to those mentioned above, I am grateful to Bernard Kamte,
Joe Repka, Qunfeng Yang, and my wife, Mary, for their comments on por-
tions of the manuscript. I would also like to acknowledge my gratitude to

9See [E. Ruh, 1993] for a brief recent overview of Cartan connections and some
of their applications.

10A copy of my translation, which is only a rough draft, can be found in the
Mathematics Library at the University of Toronto.



xvi Preface

the National Science and Engineering Research Council of Canada for its
support of this project through grant #0OGP0004621.

Finally, I would like to thank Velamir Jurdjevic for his encouragement
over the years. It was Vel who suggested that, although it is perhaps im-
possible to catch all the errors before a book reaches print, the principal
demand is that a book be interesting. As for the first part of his remark,
the responsibility for any remaining errors lies with me. I will leave it to
the reader to judge whether or not this principal demand has been met.

Richard Sharpe
Toronto, Canada
October 16, 1995
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1

In the Ashes of the Ether:
Differential Topology

It must be agreed that “hypergeometry” seems to have been de-
vised in order to strike the imagination of people who have not
enough mathematical knowledge to be aware of the true charac-
ter of an algebraic construction expressed tn geometric terms,
for that is what “hypergeometry” really is. —R. Guénon, 1945

Is Euclidean geometry true? It has mo meaning. ... One ge-
ometry cannot be more true than another; it can only be more
convenient. —H. Poincaré, 1902

I attach special importance to the view of geometry which I have
just set forth, because without it I should have been unable to
formulate the theory of relativity. —A. Einstein, 1922

Although several mathematicians, especially C.F. Gauss, studied the no-
tion of a smooth manifold in special cases, the idea of an abstract manifold
of arbitrary finite dimension seems to be due to Riemann. Mathematicians
were led to these notions only slowly. As the idea of a vector space of di-
mension higher than three became acceptable in the last century, algebraic
geometers began to study the solutions of polynomial equations in many
variables. For example, they studied the algebraic curves in the complex
projective plane, which in the real sense is roughly the study of ordinary
surfaces in four-dimensional space. At the same time, mathematical physi-
cists interested themselves in six-dimensional space, the state space of a
single particle with three position and three momentum variables; if N
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particles are considered, the dimension of the state space jumps to 6V.
The seamless algebraic passage between the ordinary notions of space and
their higher-dimensional analogs must have prepared the way for the ac-
ceptance of Riemann’s abstract manifolds. But the willingness and even
the necessity of regarding these developments as truly geometrical was slow
to take hold and was fiercely resisted in some quarters.!

Riemann’s work was followed with papers by Christoffel, Ricci, and Levi—
Civita. Klein and Lie were interested in the study of Lie groups and their
homogeneous spaces, which are again examples of manifolds, albeit very
special ones. A real boost to the subject came with Einstein’s discovery of
general relativity in 1915. At this stage it became much clearer that the
fourth dimension might be scientifically regarded as more than some geo-
metrical fantasy. Einstein himself regarded the abstract four-manifold? as
what remains of the “ether” in general relativity (cf. [A. Einstein, 1922]).
In the early years these spaces were thought about only locally, as pieces
of four-dimensional Euclidean space. Later the notion of “cosmology” ap-
peared (cf. [D. Howard and J. Stachel, eds., 1989]) and began to show
the influence of the global topology. Perhaps we may say that in studying
smooth manifolds we are studying the possible shapes of the ether.

In the hierarchy of geometry (whose “spine” rises from homotopy theory
through cell complexes, through topological and smooth manifolds to ana-
lytic varieties), the category of smooth manifolds and maps lies “halfway”
between the global rigidity of the analytic category and the almost total
flabbiness of the topological category. We might say that a smooth mani-
fold possesses full infinitesimal rigidity governed by Taylor’s theorem while
at the same time having absolutely no rigidity relating points that are not
“infinitesimally near” each other, as is seen by the existence of partitions
of unity (cf. [W. Boothby, 1986], pp. 193-195). Smooth manifolds are suffi-
ciently rigid to act as a support for the structures of differential geomtery
while at the same time being sufficiently flexible to act as a model for
many physical and mathematical circumstances that allow independent lo-
cal perturbations. Perhaps the smooth “substance” may be regarded as a
mathematical model for Aristotle’s materia prima or the Hindu prakriti.

In this chapter we show how the differential calculus lives on after the
death of a preferred coordinate system. In particular, we discuss some of the
beautiful and elementary constructions surrounding the notion of a smooth

1Cf. [M. Monastyrski, 1987], pp. 22 and 64.

Einstein admits [A. Einstein, 1922] his difficulty in conceiving space-time
without a metric. In fact, he spent the rest of his life searching for a geometric
structure on a four-manifold supplementing the metric to include electromag-
netism within a unified field theory generalizing his general theory of relativ-
ity. The general question of “what geometry on a manifold supports physics?”
remains vital to the present day. On the other hand, the context for all such
structures seems to continue to include a smooth manifold.
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manifold. Care is taken to show the relation between the forms of these con-
structions for the concrete situation of manifolds embedded in an ambient
Euclidean space and those for an abstract, coordinate-independent, mani-
fold.

§1. Smooth Manifolds

The definitive modern definition of a smooth manifold seems to have been
given by Hassler Whitney ([H. Whitney, 1936]), in which a smooth manifold
is presented as floppy pieces of Euclidean space glued together with a sort
of differentiable glue. But in order to gain perspective, we start our more
detailed discussion with topological manifolds.

Topological Manifolds

Definition 1.1. Let M be a paracompact® Hausdorff space. We call M an
n-dimensional topological manifold (and write it M™ if we wish to denote
the dimension) if for each point p € M there is an open set U in M
containing p such that U is homeomorphic to an open subset of R™ by some
homeomorphism ¢.* Such a pair (U, ¢) is called a local coordinate system
or (in the maritime terminology) a chart on M. On the other hand, ¢!
is called a local parameterization of M. Often, however, speaking loosely,
both ¢ and ¢! are referred to as coordinate systems. *

We note that if M is an n-manifold, then so is every open subset of it;
in particular, the components of M are also manifolds. On the other hand,
manifolds are quite badly behaved with respect to quotients. Taking the
quotient of a manifold by almost any equivalence relation on it leads out
of the category of manifolds. Some notable exceptions to this are studied
later under the name of fiber bundles.

Example 1.2 (the n-sphere). Let M™ = S" = {z € R""! |z -z = 1}.
Set U = {x € S™ | zp+1 > —1}. Then U is an open subset of S”, as is its
homeomorphic image p(U), where p: R**! — R™*1 is the reflection in the
hyperplane z,4+1 = 0. The open sets U and p(U) together form a covering
for S™. We can see that U (and hence p(U)) is homeomorphic to R™ by
considering the stereographic projection ¢ from the point —e,; given by

3This is equivalent to each component of M having a countable basis for its
topology (cf. [J. Dugundiji, 1966], p. 241).

“We note that only the topological structure of R™ is brought into play here.
In particular, neither the Euclidean structure nor the affine space structure has
any role. Nevertheless, we shall continue to refer to R™ as Fuclidean space.
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p:U — R" sending

1
(xl,...,zn+1)v—-> 1+xn+1($1, .,(En)
This situation is pictured below. 4
Xn+l A
@)1

(X1, Xy oen s X)

Example 1.3 (Projective space). Let P"(R) = the set of one-dimensional
subspaces of R™*!. The surjective map p: R"*! — {0} — P"(R), sending
v+ (v) (= the line spanned by v), induces the quotient topology on P*(R).

Let us show that the topological space P"(R) is Hausdorff. Any two dis-
tinct points of P"(R) may be represented by vectors vy, vy € S™ satisfying
vy - v2 > 0. Choose € > 0 to be less than half the distance from v; to
v2. Then no line through the origin meets both B.(v;) and B.(v2), where
Bc(v) denotes the open ball in R**! of radius ¢ about v. It follows that
(v1), (v2) € P™(R) lie in disjoint, open sets p(Be(v1)), p(Be(v2)) C P*(R).

If a:R® — R™*! is any affine map whose image does not contain the
origin, then the composite map pa: R* — P"(R) is injective and continu-
ous.

lines = points of

.. image of a
projective space g

\

Moreover, if V' C R™ is open, then

p Ypa(V)) = {dw e R | X e R*vea(V)}
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is open in R™*1. Thus, pa is a homeomorphism onto its image. It is called
the affine parameterization, and its inverse is called the affine coordinate
system for P™(R) arising from the affine map a.

Since every point of P*(R) lies in the image of some of the affine para-
meterization, it follows that P"(R) is a topological manifold.

A similar construction may be made for an arbitrary vector space V,
yielding the projective space P(V') canonically associated to V. 4

Smooth Manifolds
The following definition comes into sharper focus if the meanings of the

maritime terminology of “charts” and “atlas” are given due consideration.

Definition 1.4. If M™ is a topological manifold, then a (smooth) atlas on
M is a collection 4 = {(U;, i)} of charts such that

(i) the U;s form an open covering of M, and
(ii) for each pair of charts (U, ¢) and (V,%) in 4, the map
=497 |pUNV):p(UNV) = pUNV)

is a smooth® (i.e., C*) map between open sets in Euclidean space
(change of coordinates; see Figure 1.6). For brevity, we may speak of
the chart ¢, leaving U = domain(p) nameless. ®

Example 1.5. Continuing Example 1.2 of the n-sphere, we have the follow-
ing atlas consisting of two charts, 4 = {(U, v), (o(U), vp)}. The composite
w(pp~1): R — {0} — R™*! — {0} is easily seen to be smooth, so 4 is a
smooth atlas. L 2

FIGURE 1.6. Change of coordinate system.

Exercise 1.7. show that the affine coordinate systems described in Exam-
ple 1.3 constitute an atlas for P*(R). 0

SHere we use not only the topological structure of R™ but also its affine
structure so that the notion of differentiation makes sense. The choice of origin
and the Euclidean inner product are not involved.
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The main point of introducing smooth atlases is to be able to unambigu-
ously differentiate the composite appearing in Definition 1.4(ii) as often as
we please. For this simple purpose the particular choice of atlas is not im-
portant, so we are led to make the definition that two atlases are equivalent
if their union is also an atlas. This in turn leads to the following definition.

Definition 1.8. A smooth structure on a topological manifold is an equiva-
lence class of atlases, and a smooth manifold is a topological manifold with
a specified smooth structure. *

For example, the atlas for the n-sphere above endows it with a smooth
structure called the canonical smooth structure.

Starting with a given atlas, we can enlarge it to the union of all the
atlases equivalent to it. This will give a unique maximal atlas equivalent
to the given one, and the smooth structure may be identified with the
corresponding maximal atlas. In particular, if ¢ is a chart in the maximal
atlas of a smooth manifold, and f is a local diffeomorphism of R™ with
image(p) C domain(f), then fo is also a chart in the maximal atlas. This
kind of procedure allows a great deal of flexibility in the choice of chart.
For example, we can “tidy up” the chart ¢ with respect to a point p € U
by following ¢ with a translation in R™ so that the new chart sends p to
0 € R™. We may further follow ¢ by some linear transformation of R™
to move the various directions into convenient positions. We shall always
implicitly assume we are dealing with a maximal atlas, even if it is described
by a particular choice of a nonmaximal one.

Orientability

Definition 1.9. Let (U, ¢) and (V, ) be two charts for the smooth mani-
fold M™. We say these charts are compatible on W C U NV if the change
of coordinate mapping ® = o~ | (U N V) has positive Jacobian de-
terminant at each point of p(W). We say they are compatible if they are
compatible on U NV. *®

Remark 1.10. Since the sign of the determinant of the Jacobian matrix
(¥ o p~1)(z) is constant on each component of p(U NV), it follows that if
(U, ) and (V,1) are compatible at z € U NV, then they are compatible
on the component of U NV containing z. On the other hand, if they are
not compatible at a point z € U NV, then the charts (U, ) and (V, ¢))
are compatible, where ¢ is any linear transformation of R™ of negative
determinant.

Definition 1.11. Let M be a smooth manifold. An atlas for M is oriented
if any two charts in it are compatible. M is called topologically orientable
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if it has an oriented atlas. A maximal such atlas is called a topological
orientation for M. *®

Given an oriented atlas for M, we can always enlarge it to obtain a
unique maximal, oriented atlas containing it. Thus, an oriented atlas for
M determines an orientation of M.

Exercise 1.12. Show that a connected, orientable, smooth manifold M
has exactly two orientations. a

The question of whether or not a given manifold is orientable can be
determined by studying the loops on it. In preparation for this, we are
going to study paths on M of the form

o: (I7 07 1) - (M7p7 q)'

Definition 1.13. Let o be a path on M™. Suppose we are given a partition
0=ty <t <...<ty =1 and a family of charts (U;,p;), 1 < i <k,
such that o([ti—1,%]) C Ui, 1 < i < k. We call these charts compatible
along o if (Ui, ;) and (U;y1,@i+1) are compatible at o(t;) € U; N U;4q for
1<i<k-1 ®

Lemma 1.14. For any path o on M™ there exists a family of compatible
charts along o.

Proof. Since I is compact and
{o7}(U) | U a connected open set arising from a chart}

is an open cover of I, this covering has a Lebesgue number £ > 0 (cf. [J.
Dugundji, 1966], p. 234). Choose an integer k¥ > 1/e, and set t; = i/k,
0<i<ksothat 0 =1y < t; < ... < tx = 1 is a partition of I and
o([ti—1,ts]) C Ui, where Uj; is the open set of some chart (Us, ;).

We may assume inductively that (U;, ;) and (U1, pi+1) are compatible
at o(t;) for i < s. If (Us,ps) and (Ust1,ps+1) are compatible at o(ts),
we have the induction step. Otherwise we replace wst1 by ¢psi1, where
¢:R™ — R™ is any linear map of negative determinant so that (Us, ,) and
(Ust+1, dps+1) are compatible at o(ts). Renaming ¢ps+1 as ps41 completes
the inductive step. |

Lemma 1.15. Let 0: (1,0,1) — (M, p,q) be a path on M, and let (U, p;),
1 <i<k, and (Vj,9;), 1 < j <1, be two compatible families of charts
along o. Then (U1, 1) is compatible with (Vy,v1) at p = (U, pk) is com-
patible with (Vi, 1) at gq.
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Proof. Let 0 =sp <51 < ...<sg=land 0=ty <t <...<t =1
be the partitions of I corresponding to the compatible families of charts
(Ui, i), 1 <4 <k, and (Vj,;), 1 < j <1, respectively. Let S; = [s;_1, 5i]
and T; = [tj—1,t;]. The proof is by induction, where the inductive step is

Suppose that S; N T; # @ and (U;, ;) is compatible with (V},;) on
o(S; NTj). Then, either

(i) Si+1NT; # 0 and (Uit1, pit1) is compatible with (Vj, ;) on o(S;41N
7)),

or

(i) S;iNTj41 # 0 and (U, ¢;) is compatible with (Vj41,¢541) on o(S; N
Tj11)-

Since (Uy, 1) is compatible with (V7,11) at p, it will follow inductively
that (Ug, pr) is compatible with (V}, ;) at g.

Let us verify the inductive step. If s; < t;, then s; € S; N S;41 NTj, so
Si+1NT; # 0. Now (Us, ;) and (Us1, pi+1) are compatible at o(s;), so it
follows from the inductive hypothesis that (U;1,@;+1) is compatible with
(Vj,%;) at o(s;). Hence, by Remark 1.9, (Us+1,pit+1) is compatible with
(V;,%;) on (Si+1 N Ty). This verifies condition (i). Similarly, in the case
t; < si, we get condition (ii). |

Now we are ready for the notion of an orientation-preserving loop, which
is the key to the question of the orientability of a manifold.

Definition 1.16. Let A: (1,0,1) — (M, p,p) be a loop on M. We say that
A is orientation preserving if there is a compatible family of charts (U;, ¢;),
1 < i <k, along A such that (U, 1) is compatible with (Ug, px) at p. %

Note that, by Lemma 1.15, if a loop A is orientation preserving, then any
family of charts compatible along A will have the property described in Def-
inition 1.16. Now we are ready for our characterization of the orientability
of manifolds in terms of loops.

Proposition 1.17. Let M be a smooth manifold. Then

M is orientable & every loop on M is orientation preserving.

Proof. =: Given a loop A:(1,0,1) — (M,p,p) on M, we may select a
family of charts, (U;, i), 1 < < k, from an oriented atlas for M as in the
proof of Lemma 1.14. These charts will automatically be compatible since
the atlas is oriented. In particular, (U, 1) is compatible with (U, @) at
p, so the loop A is orientation preserving.
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«: It suffices to consider the case when M is connected. Fix a point
p € M, and choose a connected chart (U, ) with p € U. For every point
z € M, choose a path ¢:(1,0,1) — (M, p,z) joining p to z, and choose a
family of connected charts (U, ¢;), 1 < i < k, compatible along o, starting
with (U1,¢1) = (U, ¢). Set (Uz, ¢z) = (Uk, ¢r). Then {(Uz,¢z) | z € M}
is an atlas for M. We claim that it is oriented. It suffices to show that any
two charts (Uz, ¢z) and (Uy, ¢, ) are compatible at every point z € U, NU,.
Suppose that (U;,¢;), 1 < i < k, is the compatible family of charts used
to obtain (Ug, ¢z) and that (V;,4;), 1 < i <, is the compatible family of
charts used to obtain (Uy, py).

Since U, and U, are connected, we can join z to z in U, and y to z in U,.
These paths, together with the paths from p to z and y, give a loop based at
z. Since this loop is orientation preserving and the family of charts along it
corresponding to the open sets Uy = Ug,...,Us, Uy =U =V, V,,..., Vi =
Uy is compatible, it follows that (U, ;) and (Uy,p,) are compatible at
z2€ Uz NUy. |

Corollary 1.18. Let M be a connected, smooth manifold and let p € M.
Then

M is orientable < every loop on M based at p is orientation preserving.

Proof. In the proof of the proposition, the only loops we needed were ones
that passed through the fixed point p. Thus it suffices to show that if, for a
given orientation-preserving loop, we change the point on it that we regard
as the base point, then the new loop is still orientation preserving. But this
is clear. |
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Ezxamples of Smooth Manifolds

The fundamental example of a smooth n-manifold is of course R™ itself
with its atlas consisting of the identity map alone. More generally, any
finite dimensional real vector space V carries a canonical smooth structure
in the following manner. If dim(V) = n, we take the atlas consisting of
all linear isomorphisms ¢: V' — R™. The collection of such maps is an
atlas since for any two, ¢ and v, the change of coordinates is a linear map
e~ 1:R™ — R™ and hence smooth. Although we do not prove it here, it
turns out that the canonical structure on V is, up to diffeomorphism (see
Definition 1.20 ahead), the unigue smooth structure except in the case with
dim(V) = 4. In the latter case it turns out that there are infinitely many
smooth structures on V. (Cf. [D. Freed and K. Uhlenbeck, 1984], pp. 17-19,
and [R. Kirby, 1989].)

We shall deal only with the canonical smooth structures on vector spaces.
In particular, if V and W are finite-dimensional real vector spaces, then
Hom(V,W) is a vector space whose dimension is dim(V) - dim(W) and
hence has a canonical smooth structure. The special case when V = W =
R™ is of particular interest to us. It is the space of real n x n matrices,
which we denote by M, (R).

Example 1.19. Let M be an open subset of R™ (or more generally an
open set in any finite-dimensional vector space). Then the inclusion map
M C R™ is an atlas with one chart that provides a smooth structure on
M. In particular,

Gla(R) = {A € My(R) | det(A) # 0},

is an open set in the vector space M,(R) since det: M,,(R) — R is a con-
tinuous map. (In fact, it is a polynomial map.) Thus Gi,(R) is, canonically,
a smooth manifold. We can say even more. Both of the maps

p: Gl (R) x Gl,(R) — Gl,(R) (matriz multiplication),

1: Gl (R) — Gl (R) (inversion)

are continuous (and even rational) maps. Thus Gl,(R) is an example of a
topological group. L 4

Now consider two smooth manifolds M™ and N™. We can form their
Cartesian product M x N. If (p,q) € M x N, we may choose charts (U, ¢)
and (V,4) around p and g, respectively. Then U x V is open in M x N,
and (U x V,p x 9) is a chart around (p,q). It is easy to verify that the
collection of all such charts is an atlas for M x N and so determines a
smooth structure on it. For example, the canonical smooth structure on
R™*" is the product of the canonical structures on the factors R™ x R™.
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Two great questions in the study of smooth manifolds, which were largely
answered in the 1960s, were “Does a given topological manifold necessarily
have a smooth structure?” and “If a topological manifold has a smooth
structure, is it unique?” The answers to both of these questions is generally
no. For example, it is known that the spheres of dimension <6 have unique
smooth structures, but there are 28 distinct smooth structures on the 7-
sphere. For n > 7, there is generally more than one smooth structure on
the n-sphere (cf. [A. Kosinski, 1993]).

Smooth Maps

Not only does a smooth structure allow us unambiguously to differentiate
the composites ® appearing in the definition of atlases, it also allows us
to differentiate certain maps between manifolds. It will take us a while to
see how this may be done, and the full story will only appear in §4. Here
we prepare the way by describing the functions that we will eventually
differentiate.

Definition 1.20. A map f: M — N between smooth manifolds is called
smooth (or C*°) if it is continuous and for each point p € M there is a chart
(U, ) on M with p € U and a chart (V,4) on M with f(p) € V such that
the composite ® = ¢ fp~! is smooth. ® is called the coordinate expression
for f. The map f is called a diffeomorphism if it is smooth and bijective

with a smooth inverse. &®
N
M
f -fp)
/‘-——9 V
@
v
Rm

@w,/(@

It is clear that the smoothness of a map is independent of the choice of
charts on M and N. What is more, we even have the notion of the rank of
a smooth map at a point.
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Definition 1.21. The rank of a smooth map f: M — N at a point p € M,
denoted by rank,(f), is the rank of the Jacobian matrix

¥ (p(p)) = (Wfe™ ") (¢(p)),

where ¢ and 1) are charts containing p and f(p), respectively. ®

Varying the choice of the charts merely left and right composes ® with
local diffeomorphisms of Euclidean space which, by the chain rule, left and
right multiplies ®'((p)) by invertible matrices, and this will not change
the rank.

Differentiable topology is the study of the properties of smooth manifolds
that are preserved by diffeomorphism.

Here is a criterion for a smooth homeomorphism to be a diffeomorphism.

Theorem 1.22. Let f: M — N be a smooth bijection between smooth
manifolds on the same dimension m. Then f is a diffeomorphism if and
only if its rank at each point of M is m.

Proof. Both the condition on the rank and the smoothness are local
conditions, so it suffices to consider the case when M and N are open
subsets of Euclidean space. Let g: N — M be the inverse function for
f. Now if g is smooth, then applying the chain rule to g(f(z)) = =z
yields ¢'(f(z))f'(z) = I and hence det(g’(f(z)))det(f'(z)) = 1, so that
det(f'(z)) # 0 and thus rank,f = m. Conversely, if rank,f = m, then
det(f’(p)) # 0 and the inverse function theorem says that there is a unique
local inverse h for f satisfying h(f(p)) = p and that h is smooth. The
uniqueness tells us that g = h on their common domain, so that g = f~!
is smooth. |

Lie Groups

We now introduce some of the main players in the study of differential
geometry; these are the Lie groups studied by Sophus Lie, Felix Klein, and
Wilhelm Killing and developed by Elie Cartan. They constitute the basic
symmetry groups of differential geometry, and of nature too.

Definition 1.23. A Lie group is a group G that is also a smooth manifold
in a way that is compatible with the group structure in the sense that the
maps

(i) (multiplication) u:G x G — G,

(i) (inversion) t:G — G

are both smooth. ®
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Example 1.24. Any finite-dimensional real vector space V is a smooth
manifold in a canonical fashion and is an abelian group under vector ad-
dition. Since addition and subtraction of vectors are smooth, V is a Lie
group. 2

Example 1.25. We have already seen that Gl,(R) = {z € M,(R) |
det(x) # 0} is a topological group and that multiplication and inversion
are the restriction of rational functions M,(R) x M,(R) — M,(R) and
Mnp(R) — M, (R). Hence they are smooth and GI,(R) is a Lie group. 4

More examples of Lie groups may be found at the end of this chapter,
on page 63.

Definition 1.26. A homomorphism between Lie groups G and H is a
smooth map ¢:G — H, which is also a homomorphism in the sense of
group theory. ®

Example 1.27. The exponential mapping exp: (R, +) — (R™*, x) is an iso-
morphism of Lie groups (i.e., it and its inverse are both homomorphisms).
Although he did not have the larger concept of Lie groups, it was the exis-
tence of this isomorphism that made possible Napier’s (1614) construction
of his table of logarithms turning multiplication into addition. 4

Smooth Maps of Constant Rank

Now we study the most important species of smooth maps, those of con-
stant rank. For clarity, we begin with three local results that will soon be
rephrased in terms of smooth manifolds.

Lemma 1.28. Let f:(R™"™,0) — (R",0) be a smooth map defined on a
neighborhood of 0 which satisfies f'(0) = (1,0).5 Then there is a diffeomor-
phism J: (R™*™,0) — (R"™*™,0) defined on a neighborhood of 0 such that
foJ is a restriction of the canonical first factor projection mapping

mR"xR™ — R".
(z,y) =T

Proof. Define
G:R"xR™ - R" x R™.
(y) = (f(z9)y)
I 0
0 I
of (R" x R™,0) with inverse J, say. Since m o G(z,y) = f(z,y), we have

foJ=moGolJ=r. L

Now G is smooth and G’(0,0) = . Thus G is a local diffeomorphism

530, in particular, f has rank r at the origin.



14 1. In the Ashes of the Ether: Differential Topology

Now we apply this lemma to study maps of constant rank.

Proposition 1.29. Let f: (R™t™,0) — (R"*™,0) be a smooth map of con-

stant rank r defined on a neighborhood of 0 that satisfies f'(0) = ({)T 8)

Then there are diffeomorphisms, also defined on a neighborhood of 0, of the
form H:(R™" 0) — (R™*™,0) and J: (R™*™,0) — (R™*™,0) such that,
on some neighborhood of 0, H o f o J is a restriction of the canonical map

m R"xR™—> R™ xR™
(zy) +—  (z0)

Proof. Write f as f = (f1, f2): R™t™ — R” x R", that is, f; is the first r
components of f and f, is the last n components. Then f{(0) = (Z,0), so
by Lemma 1.28 there is a local diffeomorphism of the form J: (R™™,0) —
(R™*™,0) defined on a neighborhood of 0 such that

(R” x R™,0) 227 (R",0)

is a restriction of the canonical projection. Therefore, replacing f by foJ,
we may assume that f(z,y) = (z, f2(z,y)). It follows that

rew=("T (o
z,y) = P .

0=(7 @)
Now the condition that f has constant rank r, which is still true for our
new f, means that the Jacobian matrix (0 f2/dy) vanishes so that fa(z,y)
is independent of the variable y. Thus, we may write fa(x,y) = h(z), say.
Define H: (R™",0) — (R"*",0) by H(z,y) = (z,y — h(z)). Then H is a
local diffeomorphism and

Hf(z,y) = H(z,h(z)) = (z,0). |

Exercise 1.30. Show that in general, Proposition 1.28 becomes false if we
insist that either H or J must be the identity. a

Now we put Proposition 1.29 in terms of an arbitrary smooth map of
constant rank.

Theorem 1.31. Let f: M™ — N™ be a smooth map with constant rank
r. For each point p € M, there are charts (U, ) and (V,v¢) around p and
f(p), respectively, such that p(p) =0, ¥(f(p)) =0, f(U)CV,U and V
are connected, and ¥fp~" is a restriction of the canonical map

RTxR™™ R "xR"".
(=) - (x,0)
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Proof. Choose arbitrary charts (U, ) and (V,9) around p and f(p). Af-
ter translation we may assume that ¢(p) = 0 and 9 f(p)) = 0. Then
Yfe~':(R™,0) — (R™,0) is defined on a neighborhood of 0, and since the
n x m matrix (¢ fo~1)'(0) has rank r, we may choose matrices A € Gl,(R)
and B € Gi,,(R) such that

(45B) % = At o5 = (§1).

Replacing ¥ and ¢ by At and By, respectively, we may assume that
and ¢ satisfy the hypotheses of Proposition 1.29. Thus there are diffeomor-
phisms

H:(R",0) — (R",0) and J:(R™,0) — (R™,0)
defined on a neighborhood of 0, such that Hoo fop=1o J:(R™,0) —
(R™,0) is a restriction of
RTxR™"™ - R"xR"".
(z,y) — (z,0)

Replacing 1) by Hv and ¢ by J~1¢ finishes the proof, except for the con-
ditions on U and V, which we leave to the reader. |

Now let us mention the following two extreme cases of maps of constant
rank.

Deﬁniti.on 1.32. Let f: M™ — N™ be a smooth map with constant rank.
Then f is called an immersion if the rank is m, and a submersion if the
rank is n. *®

We apply Theorem 1.31 to these special cases to obtain the following
result.

Corollary 1.33. Let f: M™ — N™ be a smooth map. Then,
(i) f is an immersion
for each point p € M there are coordinate systems (U, ¥), (V,9)

& fabout p and f(p), respectively, such that the composite 1 fo?
is a restriction of the coordinate inclusion ©: R™ — R™ x R*™"™,

(i1) f is an submersion

for each point p € M there are coordinate systems (U, ¢), (V,%)
< q about p and f(p), respectively, such that the composite 1 foo~!
is a restriction of the coordinate projection m: R™ x R™~ " — R™.
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Proof. In each case, < is obvious, and = comes from Theorem 1.31. M

Exercise 1.34. Let M™ be a smooth manifold, and let ¢: M — R" be a
smooth injective map. Show that ¢ is an immersion if and only if, for each
point p € M, there is an m-dimensional coordinate subspace V' C R™ such
that the composite with the orthogonal projection onto V, m: M — V, has
rank m at p. a

Exercise 1.35. Show that in Corollary 1.33 the equivalences are still true
if in (i) we prescribe the coordinate system (U, ¢) and in (ii) we prescribe
the coordinate system (V, ¢). a

Proper Maps, Embeddings, and Weak Embeddings

We conclude this section with a discussion of some variations on the theme
of well-behaved mappings. We begin with a discussion of the important
notion of proper mappings.

Definition 1.36. Let f: X — Y be a continuous map with X, Y Hausdorff.
Then f is called proper if f~1(K) is compact for every compact K C Y.
(Note that if X is compact, then f is automatically proper.) &

Proposition 1.37. Let X and Y be topological spaces that are Hausdorff
and first countable. Let f: X — Y be a continuous proper injection. Then
f:X — f(X) is a homeomorphism (where the topology on f(X) is the
subspace topology), and f(X) is a closed subset of Y.

Proof. Since f: X — f(X) is a continuous bijection, we need only see
that it maps open sets to open sets, or equivalently, that it maps closed
sets to closed sets. Let C be closed in X. Suppose that y lies in the clo-
sure of f(C) in Y. Since Y is first countable, there is a sequence of points
Z1,Z2,... € C such that f(z;) = y; — y. Now the set K = {y,91,Y2,---}
is compact. Because f is proper, f ~1(K) is also compact. Since X is first
countable, the sequence z1,s, ... lying in f~!(K) N C has a convergent
subsequence, converging to z € C, say. Since Y is Hausdorft, the corre-
sponding subsequence of the yi,y2,... must then converge to f(z), and
hence y = f(z) € f(C). Thus f(C) is closed in Y and f maps closed sets
to closed sets. In particular, taking C = X shows f(X) is a closed subset
of Y. |

Definition 1.38. An embedding is a one-to-one immersion f: M — N such
that the mapping f: M — f(M) is a homeomorphism (where the topology
on f(M) is the subspace topology inherited from N ). ®

Proposition 1.39. A proper one-to-one immersion is an embedding.
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Proof. This is a simple consequence of Proposition 1.37. ]

Definition 1.40. A weak embedding is a one-to-one immersion f: M — N
such t~hat, for every smooth map g: S — N with g(S) C f(M), the induced
map §: S — M, defined by g = f o g, is smooth. %

Lemma 1.41. If f: M — N is a weak embedding, there is a unique smooth
structure on M for which this is true.

Proof. Let M; be M with a possibly distinct smooth structure such that
the map f1: My — N (which is the same as f) is also a weak embedding.
Then the induced map id: M; — M is smooth. Similarly, the induced map
id: M — M, is smooth, so the two smooth structures are identical. |

Exercise 1.42. Let A € Gln,11(R), and consider the mapping
¢a: P*(R) — P"(R) defined by ¢4 (1) = Al.

(a) Let an affine coordinate system on P"(R) arise from the affine map

f:R" — R given by f(z1,...,2n) = (1,21,...,Zy). Show that in
this coordinate system

ar +b d
da(z) = ey where A = (b z) , with d a 1 x 1 block
and a an n x n block.
(b) Show that ¢4 is a diffeomorphism. Q

§2. Submanifolds

Originally, manifolds were regarded as subsets of Euclidean space; certainly
these are the easiest ones to visualize.

In this section we study how one manifold may be situated inside another
one. We give various definitions of increasing simplicity corresponding to
the following picture.
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(>
C ‘

immersed manifolds submanifolds
regular submanifolds proper submanifolds

Whereas all of these pictures intuitively represent one-dimensional mani-
folds in the plane, the first two kinds are not generally manifolds in the sub-
space topology. The first, an immersed submanifold, has one or more “bad
points” (the double point in this picture) or odd convergent sequences in
the subspace topology; the second can also have odd convergent sequences.

We study a general notion of submanifold which includes all but the
immersed manifolds. The latter will be mentioned again at the end of this
section.

Let M™ be a smooth manifold and let N™ be a subset. The idea is that
N will be a submanifold if there are charts (U,¢) on M which, locally,
straighten out N.

Definition 2.1. Let (U, ¢) be a chart on M. The components of N N U
are called the plaques of N in this chart. The chart (U, ) on M is said to
straighten out a plaque W if ¢ restricts to a homeomorphism between W
and an open set in some n-dimensional affine subspace” A C R™. In this
case, the plaque is called a flat plaque of dimension n and the restriction
@ | W:W — A is called the plaque chart. If N is covered by flat plaques,
we say that N is locally flat in M. *

The picture corresponding to Definition 2.1 is the following one.

"An affine subspace of R™ is a set of the form {v +a € R™ | v € V}, where
V is a vector subspace of R™ and @ € R™.
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Note that in this picture N meets U in two plaques, but here only one gets
straightened out by this coordinate system. There is no limitation on the
number of plaques in a chart; it may even be infinite.

Definition 2.2. Let M™ be a smooth manifold. A subset N of M is called
a smooth (n-dimensional) submanifold if there is a covering {U,} of N by
open sets of M such that the components of U, N N are all flat plaques of
dimension n.8 ®

Of course we may always “tidy up” ¢ so that the affine subspace 4 is a
coordinate subspace, say the coordinate subspace corresponding to the first
n coordinates, and so that ¢(p) = 0; but this is not always appropriate.
The coordinate charts guaranteed by the definition tell us that “locally”
the pair (M, N) looks like the pair (R™, R"™). This eliminates some of the
phenomena of strange convergent sequences and the phenomena of limit
points of nontrivial topology such as appear in Figure 2.3.

FIGURE 2.3. Odd limit points.

8This definition and the lemma and theorem that follow were inspired by a
discussion in [P. Molino, 1988], pp. 11-12. We note, however, that the property
that every plaque in U N N is flat is not easily verified unless N has some other
special property allowing us to assume that UNN has just one plaque. The aim is
to have a definition broad enough to include nonclosed subgroups of a Lie group
and, more generally, the leaves of a foliation (cf. Chapter 2) for which this “one
plaque” property may fail.
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Figure 2.3(a) is an example of what is called an immersed submanifold,®
which is the image of a manifold under a one-to-one immersion.

We are going to define a topology and a smooth structure on a subman-
ifold N. The topology is called the submanifold topology; it generally has
more open sets than the induced topology. Note that each plaque of a sub-
manifold inherits the induced topology from M, and in this topology the
flat plaques are homeomorphic to open sets in R™.

Definition 2.4. The submanifold topology on N is the one for which a set
U C N is open if it meets every flat plaque in an open set (in the induced
topology on the plaque). *

Exercise 2.5. Suppose that N is a submanifold of the smooth manifold
M. Show that if {W,} is a given covering of N by flat plaques, thenU C N
is open if and only if U N W, is open for every index a. a

To study the submanifold topology, we shall use the following observa-
tion.

Lemma 2.6. Suppose that N is a submanifold of the smooth manifold M.
IfW C N is a flat plaque and V C M is an open set, then W NV is a
union of at most countably many flat plaques.

Proof. Let (U, ) be a chart on M that straightens out W. This means
that (W) C R" is an open subset of an n-dimensional affine subspace A.
Write W NV = UW,, where the W,, are the path components of W NV.
Then each W, is an open set in W NV and hence in W as well. Hence
each p(W,) C R" is open in A. Thus, W, is a flat plaque straightened out
by the chart (UNV, ¢ | UNV) on M. Moreover, there can be at most
countably many of the plaques W,; otherwise the open set U, ¢(Wa) C A
would have uncountably many components, contradicting the fact that A,
and therefore all its subspaces, have countable bases for their topologies. B

Theorem 2.7. Let M be a smooth manifold and N a submanifold equipped
with the submanifold topology. Then

(i) N is a topological manifold,

(ii) the plague charts provide a smooth atlas and hence a smooth structure
for N,

9Suppose f: N — M is a one-to-one immersion. It would clearly be a difficult
matter, and perhaps even impossible, to reconstruct the manifold N and the
immersion f merely from the immersed submanifold itself, that is, from the image
set f(N) C M. The definition we give for submanifold is intermediate between
the notion of an immersed submanifold and that of a regular submanifold.
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(ili) the inclusion map N C M is a weak embedding.

Proof. (i) To see that the inclusion N C M is continuous, it suffices to
show that any open set V C M meets any plaque of N in an open subset
of that plaque. But since the topology on a plaque is just the induced
topology as a subset of M, this is clear. Since N C M is continuous and
M is HausdorfT, it follows that NV is Hausdorff. The flat plaque charts show
that N is locally Euclidean.

It remains to see that N is paracompact in the submanifold topology. For
this it suffices to show that each component of N is a countable union of flat
plaques. Without loss of generality, we may assume N is path connected.
Since M is a paracompact Hausdorff space, so is N, and we may choose
a locally finite refinement of the open cover {U,}aer of N (see Definition
2.2). Calling this locally finite refinement {U, }acr again, we note that by
Lemma 2.6 it still has the property that each component of U, N N is a
flat plaque.

Fix a base point z € N. Now if J = {a1,...,ax} is a sequence of
elements of I, we let A; denote the subset of NV which may be joined to z
by a piecewise smooth path on M that lies on N and passes successively
through Uy, ,Uqy, .., Uay-

Us,

Ual []a3 (]ak-l

Ug,

Of cmarse, there may be no overlap between successive Us, in which case
Ay=10.

First note that, because N is assumed path connected and the unit in-
terval is compact, each point y € M may be joined to z by a path in A;
for some J; thus | J; Ay = N. Next note that A; C Uy, N N is a union
of components of Uy, N N, each one of which is a flat plaque. If we can
show that the number of components of A; is at most countable, we will
be finished since the local finiteness of the covering {U, }aer implies that
{J | #J < k and A; # 0} is finite and hence N is covered by at most
countably many flat plaques.

We show by induction on #J that the number of components of A; is
at most countable. If #J = 1, then clearly A; has at most one component.
Suppose that

J = {al,...,ak}, Jl = {al,...,ak_l},
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and we already know that A; has at most countably many components.
By Lemma 2.6, each plaque of A meets at most countably many plaques
in U;, N N. Thus, A; has at most countably many components.

(ii) The smooth compatibility of the plaque charts is an immediate con-
sequence of the smooth compatibility of the charts on M.

(iii) First note that the inclusion N C M is obviously a one-to-one im-
mersion. Now let g: S — M be a smooth map, with g(S) C N. To check
that the induced map f: S — N is smooth, let (W, | W) be a plaque
chart. Then by definition,

f | fH(W) is smooth & (¢ | W)(f | £~1(W)) is smooth.

But (¢ | W)o (f | fTE(W) = (¢ | W)o(g| g (W)) = (eg | g (W)) is
smooth. ]

Regular Submanifolds

Now we pass to the definition of regular submanifolds, which are simpler
and more important than the general submanifolds studied above. They
intersect more neatly with coordinate charts of the ambient manifold; in
particular, the various components of this intersection do not pile up. How-
ever, we pay for the simplicity of regular submanifolds by the exclusion of
important examples, including the nonclosed subgroups of Lie groups and
the leaves of some foliations.

Definition 2.8. An n-dimensional submanifold N C M is regular if there
is a covering {U,} of N by open sets of M such that, for each o, U, N N
is a single flat plaque of dimension 7. *®

Proposition 2.9. For a regular submanifold, the subspace topology is the
same as the submanifold topology.

Proof. Let N C M be a regular submanifold. Since this inclusion map
is continuous when N is given the submanifold topology, to show that
the two topologies are the same, it suffices to show that given any subset
V C N open in the submanifold topology, there is an open set V! ¢ M
with NNV’ =V so that V is also open in the subspace topology.

Since V is a union of flat plaques, it is sufficient to find V” in the case that
V itself is a flat plaque. Choose a chart (U, ¢) that straightens this plaque
and contains no other plaques. We may assume ¢: (U, V) — (R™ x R™™",
R"™ x 0). Then V' = ¢~ }(p(V) x B¢(0)) will do the job, where B.(0) is the
open ¢ ball about the origin in R™™ ™. |

Proper Submanifolds

Even more restrictive than regular submanifolds are the proper submani-
folds.
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Definition 2.10. A submanifold N C M is called proper if it meets every
compact subset of M in a compact subset of N (in the submanifold topol-
ogy)- Note that this is equivalent to saying that the inclusion map N ¢ M
is proper. ®

Theorem 2.11. Let N C M be a proper submanifold. Then M is regular.

Proof. Fix p € N. Take a chart (U, ) for M, with U compact, that
straightens out the plaque W = U N N containing p. Now, as in the last
paragraph of the proof of Proposition 2.9, we may assume that ¢(U) =
(W) x Bc(0). We may choose a sequence of open sets U; = ¢~ (o(W) x
B¢/j(0)), 5 =1,2,..., s0 that (Uj;, ¢ | U;) is also a chart straightening out
the plaque W and (1,5, U; = W. We want to show that some U; meets N
in just the single plaque W, which will prove regularity. Suppose otherwise.
Then we could find an infinite sequence of points z1,z2,...on N —W, with
z; € U; C U each in a distinct plaque of U. Since U is compact, there is a
convergent subsequence whose points, together with their limit, constitute
a closed and therefore compact set K C U N N. Repeating this argument
with a slightly smaller plaque W’ ¢ W’ C W, we obtain K C U N N. But
this is impossible since each point of K lies in a distinct plaque of U and
these plaques constitute an open cover of K in the submanifold topology
having no finite subcover, which contradicts the compactness of K. ]

Exercise 2.12. Show that neither the union nor the intersection of two
proper submanifolds need be a submanifold. a

Submanifolds Described Implicitly

Here is a simple criterion for the smoothness of a submanifold described
implicitly.

Theorem 2.13. Let M™ and N™ be smooth manifolds with m > n, and
let f: M — N be a smooth map. Fory € N, we set M, = f~1(y). Assume
that f has constant rank, r say, on a neighborhood of M,. Then M, is a
smooth proper submanifold of M of dimension m — r.

Proof. Let p € M,. Since the rank is constant on a neighborhood of p,
by Theorem 1.31 there are coordinate charts (U, ) and (V%) around p

and f(p), respectively, such that ¢(p) = 0, ¥(f(p)) = 0, and ¥ fp~ ! is a
restriction of the canonical map

TR XxR™"™ SR"x R*".
(z,y) — (x,0)

Thus o(UNM,) C0xR™ " in R" x R™"". Hence M, has just one plaque
in U and ¢ straightens out this plaque. This shows that M, is a regular
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FIGURE 2.15. Various elliptic curves.

submanifold. Since M, is closed and M is Hausdorff, it follows that M, N K
is compact for every compact K C M. Thus M, is proper. |

Example 2.14. Let M) = {(z,y) € R? | > = z(z — 1)(z — A)}, which
is the Weierstrass normal form of the general cubic (elliptic) curve. A is a
parameter that we will take to be real. Thus M} is given implicitly as the
zero set of the function f: R? — R, where

fl@,y) =1? —z(@— 1)z -N) =¢* —2° + A+ 1)z = Az.

Calculating, we have f'(z,y) = (=322 + 2(A + 1)z — A, 2y). The maximal
possible rank for the derivative is 1, and we can find all points on M), where
this fails by solving the system

322 —2(A + 1)z +

z(z —1)(z - A) =1,
1=0,
y=0.

The only solutions are (z,y,A) = (0,0,0) and (1,0,1), which shows that

M, is a smooth submanifold unless A = 0 or 1 and that, in these exceptional

cases, My —{(0,0)} and M; — {(1,0)} are also smooth submanifolds of R2.

Figure 2.15 shows these singular points on Mo and M, as well as one of

the more typical cases of a nonsingular M. L 4

Example 2.16. Let us reconsider the n-sphere
S"={z e R"*! |z -z =1}

Thus, S™ = F~1({1}), where F: R"*! — R given by F(z) = z - z. Calcu-
lating from first principles, F'(z)v = 2z -v. Thus, F has rank 1 everywhere
on S™. It follows from Theorem 2.13 that S™ is a smooth submanifold of
R""H. 'S
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Example 2.17. Let O,(R) = {A € M,(R) | AA* = I} = the orthogonal
group. Define F: M,(R) — M,(R) by F(A) = AA®, so that O,(R) =
F~1(I). Now F is smooth and we may calculate

F(A)V = lim %{F(A +hV) — F(A)}
= lim %{(A +RV)(A+hV) — A4Y
= lim l{hVAt +hAV? + RPVV}
=VA' + AVY,

In the particular case that A = I, we have ker F'(I) = 0,(R), the vector
space of all n x n skew-symmetric matrices. Note that dim o,(R) = in(n—
1). More generally we have an isomorphism o, (R) ~ ker F'(A), which sends
S +— SA for any A € O,(R). In particular, the rank of F' is constant along
On(R), so O,(R) is a smooth submanifold of M,(R). *

Exercise 2.18. Note that the smooth map det: O,(R) — R has values 1
(since 1 = det(AA®) = det(A) det(A?) = det(A)?), so it follows that O, (R)
is the disjoint union of two open sets. Show that these are the components
of On(R). a

Exercise 2.19. Assume the situation of Theorem 2.12; let W C N be a
submanifold; and assume for each z € f~1(W) that fu(ToM) + Tp)W =
Tf(z)N. Show that f~!(W) is a submanifold of M. a

Submanifolds Described Parametrically

Now we pass to the dual situation of a manifold described parametrically.

Theorem 2.20. Let M™ and N™ be smooth manifolds, and let f: M — N
be a proper one-to-one immersion. Then f(M) is a regular submanifold of
N and the map f: M — f(M) is a diffeomorphism.

Proof. We first show that f(M) is a regular manifold. Choose p € M,
and set ¢ = f(p). Since f is an immersion, its rank is m everywhere. Then
by Corollary 1.33 there are connected coordinate charts (U, ) and (V,9)
around p and g, respectively, such that p(p) =0, ¥(q) =0, f(U) C f(V),
and ¥ fp~! is the restriction to ¢(U) of the canonical inclusion

tR™ > R™x R ™.

z - (x,0)

Thus ¥(f(U)) lies in an open subset of R™ x 0 C R™ x R"~™. Using the
fact that f is proper, an argument similar to the proof of Theorem 2.11
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allows us to shrink U and V so that f(U)NV = f(M) NV is connected.
Since (V,1) straightens out the unique plaque f(M) NV in V, it follows
that f(M) is a regular submanifold.

By Theorem 2.7(iii), f(M) C N is a weak embedding. Since f: M — N
is smooth, it follows (cf. Definition 1.40) that the map f: M — f(M) is also
smooth. Since both f(M) C N and f: M — N are one-to-one immersions,
it follows that f: M — f(M) is a bijective immersion. Then by Theorem
1.22, f is a diffeomorphism. ]

This theorem shows that the image of a proper embedding is a smooth
submanifold. We remark that the embedding theorem of Whitney tells us
that every smooth n-manifold admits a proper embedding as a smooth
submanifold of Euclidean space of dimension 2n + 1 (cf. [J. Milnor, 1965}).

Immersed Manifolds and Immersed Submanifolds

Definition 2.21. An immersed manifold in M is the image of an immersion
f:N — M. (Note that the image is not in general a submanifold!) An
immersed submanifold is the image of a one-to-one immersion f: N — M.

®

For example, the elliptic curve M; appearing in Example 2.14 may be
regarded as an immersed manifold in R?. In such a case, it is still true
that each point p € N has a neighborhood U C N such that f(U) is a
submanifold of M diffeomorphic to U.

Exercise 2.22. Show that the curve M; = {(z,y) € R? | ¥ = z(z — 1)?}
is an immersed submanifold of R? by parametrizing it by the slope of the
line through (z,y) € My and (1,0). Q

Exercise 2.23. Show that all of the following inclusions are proper inclu-
sions:

immersed weakly
{ submanifol ds} D embedded D {submanifolds}

submanifolds

5 regular 5 proper
submanifolds submanifolds |
(Hint: To show that the first and second inclusions are proper, consider
Figure 2.3.) a

The following exercise provides a preview of the “second fundamental
form” of a submanifold of R"™.
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Exercise 2.24.* Suppose that M C R” is given implicitly in a neighbor-
hood of p € M by the zero set of a function of maximal rank F: RN — R".
The tangent space to M at z is defined to be the kernel of the linear
surjection F'(z): RY — R" and is denoted T, (M). Define the second fun-
damental form of M at = by the formula

Bg: To(M) x To(M) — RN /T(M),
F'(z)(Bz(u,v)) = F"(z)(u,v).

It follows that the symmetric bilinear form B, (u,v) € RN /T(M) is defined.

(i) Let o(t) be path on M C R through z and v(t) a vector field tangent
to M along o. Show that at =, = —Bg(¢,v) mod T,(M).

(ii) Use (i) to show that By: Tp(M) x To(M) — RN /T, (M) is indepen-
dent of the choice of F.

(iii) Show that by using the Euclidean metric on RY we can reinterpret
B, as amap Bg: Tp (M) x Ty (M) — Ty (M)~ (orthogonal complement) and
then define the “transpose”

BL: T (M) x To (M) — Tp(M),
(u, BL(v,w)) = (Bg(u,v),w) for all u,v € To(M), w € To(M)*:.
Show that if o(t) is a path on M C R through z and w(t) a vector field
normal to M along o, then at z,% = B%(¢,w) mod Ty (M)*.

(iv) Find an analog of (iii) that does not rely on using a Euclidean metric.
a

In this formulation of the second fundamental form, it is clear that it has
fairly strong invariance properties. The following exercises make this more
precise.

Exercise 2.25. Suppose that M C R is given implicitly in a neighbor-
hood of p € M as the zero set of a function of maximal rank F: RY — R,
and let ¢: RN — RV be a diffeomorphism. Set F = F o ¢, and let B
and B be the second fundamental forms associated to M = F~1(0) and
M = F~1(0), respectively. Show ¢.(B(@,7)) = B(u,v) + ¢"(#,?) mod
Typ(z)(M) for all @,% € T,(M), where u = ¢ (i) and v = ¢, (7). Q

Exercise 2.26. Let M C R" and let ¢: RY — R" be any invertible affine
map. Let B, (respectively, By(s)) denote the second fundamental form of
M at x (respectively, of ¢(M) at ¢(z)). Show that

¢%(Bz(u,v)) = By(a)(dpu, p5v) mod T (M) for all u,v € T(M). O

Exercise 2.27. Assume the hypotheses of Exercise 2.26, and let p: RN —
R be a smooth function. Define ¢ = %qﬁ: RN — RY, and show that

!, v) = —%{p;w)qs;(u) + o (u) (v)u — (1, v)} mod p(z)
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for all u,v € RV.

(Of course, we must avoid points where p vanishes.) Using the results of
§4, deduce the analog of Exercise 2.26 for a submanifold M C PV (R) and
an invertible projective transformation ¢: P*(R) — P*(R). Q

Exercise 2.28. Assume the hypotheses and notation of Exercises 2.25 and
2.27. Let p(z) = x/(z-) (inversion). Show that, in this case, ¢, (B¢ (4, )) =
By(a) (u,v) = 2(u - v/ p(x))$(x)- d

Note that Exercise 2.28 shows that the “raw” second fundamental form
fails to be invariant under inversion. Nevertheless, we can obtain an in-
variant second fundamental form by taking the “traceless” version of B, as
indicated in the following exercise.

Exercise 2.29.* Let V be a Euclidean space (with inner product “-”) and
W a vector space. Let B:V x V — W be a symmetric form. Define Trace
B =73 .cdim v B(ei,ei) € W, where {e;} is an orthonormal basis for V..
Define By(u,v) = B(u,v) — (Trace B/dim V)u - v.

(a) Show that Trace B is independent of the choice of the basis.

(b) Assuming the hypotheses of Exercise 2.28, show that ¢/, (B (@, 7)) =
By(u,v). a

We shall revisit some of the ideas of these exercises in Chapters 6 and 7.

§3. Fiber Bundles

Everyone knows the usefulness in advanced calculus of studying vector-
valued functions. Consider, for example, the velocity field of a particle
moving along a fixed curve « in R2. This field is described by a function
v:y — R? defined along the curve. From another point of view, this same
field may be regarded as a function whose value at z € + lies in the one-
dimensional subspace V; of R? that is parallel to the tangent line T to the
curve at .

=

v(x)
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We emphasize that {V, | z € v} is a family of subspaces parametrized by

Fiber bundles formalize the notion of a “parametrized family of so-and-
so’s.” The “so-and-so” is called the fiber and may be a vector space as
in the example above (corresponding to a vector bundle) or a Lie group
(corresponding to a principal G bundle). These two are the most important
cases, although other fibers may also serve as necessary. Sections (or in
the case of vector bundles, one often says vector fields or tensors), which
generalize functions, are functions on the parameter space whose value at
z lies in “the so-and-so at z.” If the parametrized family is constant, then
fields (sections) reduce to ordinary functions.

The justification for the degree of generality employed here will appear
first in the next section, where it is shown that a smooth manifold has a tan-
gent bundle intrinsically associated with it, and again in Chapter 5, where
it is shown that a Cartan geometry has a principal G bundle intrinsically
associated with it.

As with manifolds, it is possible to discuss both topological and smooth
bundles. Of course, our principal interest is in the smooth case.

Topological Bundles and Smooth Bundles

Definition 3.1. Let F be a topological space and 7: E — B a continuous
map. We call the quadruple £ = (E, B, 7, F) a (locally trivial) fiber bun-
dle with (abstract) fiber F if, for each point b € B, there is an open set
U C B containing p such that 7=1(U) is homeomorphic to U x F by a
homeomorphism ¢ such that the following diagram commutes.

') —————)UxF

A

The pair (U, p) is called a chart (or local bundle coordinate system). ®

Note that 7~1(b), the fiber over B, denoted Fp, is homeomorphic to F'
for all b € B. B is called the base space and E the total space of the
bundle. Given a bundle &, we sometimes denote by B(£), E(£), etc., the
corresponding parts of the bundle. If the base, fiber, and total spaces are
smooth manifolds, 7 is a smooth map, and the charts may always be chosen
to be smooth maps, then we have a smooth bundle. Two bundles & and
&, over the same base B are said to be isomorphic if there is a homeomor-
phism (diffeomorphism) ¢ between the total spaces such that the following
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diagram commutes. ¢ is called a bundle isomorphism or, in the case when
& = & a bundle automorphism.

4
Ez—:’—)E1
B

Example 3.2. The simplest example of a bundle is the product bundle
E = B x F with m = m, (projection on the first factor). This bundle is
also called the trivial bundle. If E is a locally compact Hausdorff space,
then a necessary and sufficient condition that a bundle ¢ = (E, B,n, F) be
(isomorphic to) the trivial bundle is the existence of a trivialization, which
is a continuous (smooth) map t: E — F that induces a homeomorphism
(diffeomorphism) upon restriction to each fiber 771 (b). In this case the map
(p,t): E — B x F is a homeomorphism (diffeomorphism) commuting with
the canonical projection to B. L 4

Example 3.3. Perhaps the simplest example of a nontrivial bundle is the
Mébius band E pictured in Figure 3.4. It is clear that if we remove any
point from the base B, we get an open set U homeomorphic to the interval
(0,1) and 7~!(U) is homeomorphic to (0,1) x [0,1]. Thus it is a bundle
over B = S with fiber I = [0,1]. But it is not a trivial bundle; if it were,
the boundary would consist of two components, whereas in fact it has only
one (Figure 3.4). *

UxF

{ projection on }
! | the first factor

S
S
\,

FIGURE 3.4. M6bius band.
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Example 3.5. The canonical line bundle over projective space general-
izes the Mobius band. This is the bundle m: E — P™(R), where E =
{(l,v) € P"(R) x R**! | v € I} and 7(l,v) = I. To see this is a bun-
dle, let a:R™ — R™! be an affine map whose image does not contain
the origin (cf. Example 1.3). Then U, = pa(R™) is open in P*(R) and
pa:R™ — U, is a diffeomorphism. We define ;':Us x R — 77 '(Ua) by
(1,A) = (1, Ma(pa)~1(1)). It is easily checked that ¢, ' is a diffeomorphism
that is linear on fibers, and that the pairs {(U,, )} constitute an atlas
for the line bundle E.

In a similar fashion we may describe the canonical line bundle E over
the projective space P(V) associated to any vector space V. L 2

Example 3.6. By definition, every covering space m: E — B is a fiber
bundle with discrete fiber. *

G Bundles

Now we consider the following, more refined notion of a bundle in which a
Lie group of symmetries appears.

Definition 3.7. Let £ = (E, B, m, F') be a smooth fiber bundle, and suppose
that G is a Lie group that acts smoothly on F' as a group of diffeomor-
phisms. A G atlas for ¢ is a collection 4 = {(U;, p;)} of charts for £ such
that

(i) the U; cover B,
(ii) for each pair of charts (U, ¢) and (V,%) in 4 the map
P=ep 1 (UNV)x F— (UNV)XF,

called a coordinate change, has the form ®(u, f) = (u, h(u)f), where
h:UNV — G is a smooth map called a transition function. *®

Note that in the case when the homomorphism G — Diff(F) has a kernel
H, then H is a closed'® normal subgroup and the action factors through
G/H, so the bundle may also be regarded as a G/H bundle.!* Thus there is
nothing lost if we make the restriction that G acts effectively on F', namely,
that H = 1. In this case we may speak of an effective G bundle. Just as in
the case of manifolds, we call two G atlases equivalent if their union is also
a G atlas.

Vlet A = {(x,z) € F x F | ¢ € F}. Since the action is a smooth map
G x F — F, the graph of this map, given by I' = {(g,z,y) € Gx F X F | gz = y},
is closed and hence so is the intersection 'NG X A = H x A.

1111 Chapter 4 it will be shown that H and G/H are again Lie groups.
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Definition 3.8. A G structure on the smooth bundle ¢ is an equivalence
class of G atlases on ¢, and a G bundle is a smooth bundle £ with a specified
G structure. ®

Exercise 3.9 (Product bundles). Let &; = (E;, Bj,;, F;,Gj5),j = 1,2, be
two “G” bundles. Show that 61 X 62 = (E1 X Ez, Bl X Bz, T X T, Fl X Fg,
G1 x G2) is a G; X G bundle in a canonical fashion.

o

Exercise 3.10 (Induced, or pullback bundles). Let £ = (E, B,n, F,G)
be a smooth G bundle and let f: X — B be a smooth map. Let f*(§) =
(E1, X,m, F,G), where E; = {(z,e) € XX E | f(z) = n(e)} and mi(z,€) =
x. Show that it is a smooth G bundle. a

Definition 3.11. A G bundle is flat if all the transition functions
h:UNV — G are constant. (This happens, in particular, if G is a dis-
crete group.)'? &

Exercise 3.12. Let B be a manifold with universal cover B. Show that a
flat G-bundle over B with fiber F induces a trivial bundle over B with a
canonical trivialization and that the action of the group of covering trans-
formations on the fiber is a representation 7 (B,b) — G. Conversely, show
that every representation 7;(B,b) — G arises in this way. Qa

Given a G atlas, we can consider the union of all G atlases equivalent
to it to obtain the unique maximal atlas equivalent to the given one. The

12The reader may wonder about the origin and importance of flat bundles
in geometry. It often happens that one makes some locally defined geometrical
construction on a manifold which depends on a choice in some discrete universe
of possible choices. By the discreteness any choice can be extended smoothly
over small neighborhoods, but globally one may not be able to do this. The
appearance of this situation is a sure sign of the presence of a helpful flat bundle
that resolves the global ambiguity. For example, at a nonumbilic point p on an
oriented surface in 3-space, there are two principal tangent lines corresponding to
the two principal curvatures. Although we may choose two unit vectors e; and ez
in these two directions at p, there is no unique choice. Of course, we may assume
that the basis (e1, e2) gives the correct orientation for the surface, but that still
leaves the choice between +(e1, e2). If we work only locally, we may just choose
one of the two, say (e1, e2), and be done with it. It is a fact, however, that as we
push our choice (e1, e2) along a loop enclosing a single (generic) umbilic point, it
will come back to p as the other choice, —(e1, ez). This indicates the presence of
a flat bundle, in this case the flat line bundle L with discrete group 1, with the
property that the fiber turns over every time we pass around a generic umbilic.
Rather than regarding e; and ez as sections of the tangent bundle T' of the surface,
which would run into sign trouble as we pass around an umbilic, we regard them
as sections of the tensor product T'® L. The rectification of the sign is built
into L. And, moreover, rather than saying that we have now accommodated the
frame by a clever construction, it is more true to say that the frame was always
geometrically comprised of sections of T ® L but we just didn’t know it before.
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G structure may be identified with this maximal atlas, and the remarks
about tidying up the coordinate charts in the corresponding situation for
smooth manifolds apply here as well. Two G bundles are isomorphic if they
are isomorphic as bundles by an isomorphism identifying the G structures.

Example 3.13. A finite covering space 7 M — M is a G bundle with
discrete fiber whose group is the permutation group of the fiber. (If the
fiber is not finite, the permutation group is not countable.) *

Example 3.14. We sketch a more complicated example of a G bundle,
the Hopf fibration S — % — S2. The Lie group S' = {A € C | || = 1}
acts smoothly on S% = {w = (wo,w;) € C? | |wo|*> + |w1|> = 1} by the
formula X - (wp,w;) = (Awp, Aw; ). We shall regard S? as the union of two
copies of C with identifications, $? = Co U, C1, where ¢: Cj — Cf is
given by ¢(29) = 2;'. The map ¢ may be regarded as arising from two
stereographic projections from the sphere of radius 1/2 in R?® as in the
following figure. (The complex planes are arranged so that their positive
real axes are parallel.)

0 2 =25 = 0(zp)
C,(=copy of Cg
“turned over”) ()
52
Co=0) 0 2p

Now the map m: S — S? is given by

_ ’wl/UJ()ECl 1fw0740,
W(w) - {wo/wl € Co ifuy 750

Note that if wg,w; # 0, the two definitions agree. It is easy to verify that
7(u) = m(v) € u = v for some A € S*. The trivializations are

71(Co) = Cp x St 7~ 1(C) ~ C; x S,
(wo, w1) — (w1/wo, wo/|wol), (wo, w1) = (wo/w1, w1/ [w1]),
and the coordinate change between these is seen to be

Cyx S* > Cp x S,
(2,A) = (1/2,Az/2]).

Since this is of the form (z,A) — (¢(2),h(2))\), we have an S! bundle
over S2. The inverse image of a circle on S§? in S is a torus. Picturing
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north pole fiber

—45° torus

south pole fibre

FIGURE 3.15. The Hopf fibration.

S3 minus the north pole as R2 via stereographic projection, Figure 3.15
shows an accurate cutaway perspective view in R3 of the fibers on the three
tori lying over the equator, and the +45 degree parallels of S2. The fibers
themselves correspond to the places where the ratio w; /wg is constant and
appear as circles in Figure 3.15. The fibers over the north and south poles,
namely, the z-axis and the “central circle,” are also shown. In fact, the
subset of R3 consisting of R3 — z-azis — central circle is “foliated” by the
tori lying over the lines of latitude on the 2-sphere.

All but two of the fibers of the Hopf bundle lie on these tori in R3. On
each torus the fibers run around “once in each direction.” The base 52
may be regarded as “the space of fibers” in the sense that 7 establishes a
bijection between the set of fibers and the base. Moreover, the topology on
the base indicates the mutual disposition of the fibers in the sense that two
fibers are “near” each other when the corresponding points in B are “near”
each other. Figure 3.16 shows how the “space of fibers” of the Hopf bundle
fit together topologically to form the 2-sphere. One of the tori of Figure

§3. Fiber Bundles 35

complementary
disc

circle

central /\‘/’_—\
/’_\

Cross
sectional
disc

one of the fibers
on the torus

FIGURE 3.16. Topology of the space of fibers.

3.16 has been singled out. A cross-sectional disc for the corresponding solid
torus meets every fiber inside the torus just once. The “complementary
disc” meets each fiber outside the torus once. The fibers on the torus meet
each disc once in its bounding circle and provide a diffeomorphism between
these two circles. Thus the “space of fibers” is made up of two 2-discs glued
together by a diffeomorphism of their boundaries, which is just the 2-sphere.
L 2

Exercise 3.17. Show that the Mobius band is a G bundle with G = Z/2.
Q

Construction of Bundles

Now that we have seen an interesting example of a G bundle, let us return
to the definition to see what ingredients are required for the construction of
a G bundle. It is clear from the definition that if we are given an effective
G bundle, then we are given

(i) a Lie group G acting smoothly on a smooth manifold F,
(if) an open covering {U,} of a manifold B,

(ili) smooth maps hga: Uy NUs — G related by the property that if U, N
Us N U, # 0, then on this intersection we have hyghgs = Rya.

The latter property is a consequence of the existence of the effective G
bundle and may be seen as follows. We may assume that the open sets U,
are indexed by the trivializations

a:m™(U,) — Uy x F.
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The coordinate changes are Ba~1: (U, NUg) x F — (Ua N Up) x F, where
BoY(u, f) = (u, hgaf). Thus, the obvious identity y87'Ba~! = ya~' is
equivalent to hyghgs = hya.

It is quite clear that this procedure may be reversed in that if we are
given the data of (i), (ii), and (iii), we can construct a G bundle by forming
the disjoint union of the products U x F and dividing by the equivalence
relation generated by making the identifications

Uy X F Usg x F
U U
(UanNUg)x F — (UaNUg) x F
(u, f) = (u,hgaf)-

Exercise 3.18. Verify that this procedure does yield a smooth G bundle
over B with fiber F' and that if the data (i), (ii), and (iii) arose from a G
bundle, this procedure reconstructs that G bundle (up to isomorphism). O

Principal Bundles

A special type of G bundle is the one for which the group G “is the same
as” the fiber F in the sense that for some (and hence any) point fy € F, the
map G — F sending g — ¢fo is a diffeomorphism. (For example, the Hopf
bundle fits this description.) It then follows that the G bundle is effective,
so the transition maps h:U NV — G are determined by the bundle. Note
that the diffeomorphism G — F' does not yield a canonical identification of
G with the abstract fiber F', because the bijection will vary with the choice
of fo € F. Nevertheless, once we have chosen such an identification, we can
reconstruct the bundle using G itself as the (abstract) fiber together with
the left action of G on itself, as may be seen from the following diagram.

(u, 8 f) 1 (u, h(W)g fy)
UxF D (UnV)xF —> (UNnV)XF c VXF
UxG D (UnV)xG ——> (UnV)XG C VxG
(u, 8 | > (u, h(u)g)

Moreover, it further follows from this diagram that a principal G bundle
has a smooth right G action, as may be seen by comparing the coordinate
changes before and after we identify the fiber with G. The right G action
commutes with the coordinate changes, which themselves involve only the
left G action. This leads us to the following definition.
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Definition 3.19. A principal™® G bundle is a smooth fiber bundle ¢ =
(P, B, m, F') together with a right action P x G — P that is fiber preserving
and acts simply transitively on each fiber. ®

Example 3.20. A regular covering space m: M — M is a G bundle with
discrete fiber whose group is 71 (M, b)/N, where N = Image m.: m1 (M, b) —
T (M, b) L 4

Exercise 3.21. Verify that a principal G bundle does in fact possess a
canonical effective G bundle structure. [Hint: the coordinate changes must
commute with the G action.] Q

Exercise 3.22.* Let £ = (P, B, n, F') be a principal G bundle. Show that
the action P x G — P is proper in the sense that if A and B are compact
subsets of P then {g € G | (9A) N B # (0} is compact. o

Exercise 3.23.* Let H — P — M be a principal bundle, and suppose
that M is connected. Fix a component P; of P and an element p; € P,
and set Hy = {h € H|p1h € P, }.

(i) Show that H; is a codimension-zero subgroup of H.
(11) Show that P,H, C P;.
(iif) Show that H; — P, — M is a principal H; bundle. O

The case of a principal G bundle is fundamental because of the inverse
constructions that allow us to pass back and forth between effective G
bundles with fiber F' and principal G bundles. These passages may be
described as follows. An effective G bundle with fiber F' determines the
transition functions h: U NV — @G, and hence, as above, we can construct
a principal G bundle called the associated G bundle. Conversely, given a
principal G bundle £ and a smooth effective action of G on a manifold F', we
can use the action to construct a G bundle with fiber F' denoted by £ x¢ F.
These two constructions are inverse to each other. Therefore, we may say
that the fiber of an effective G bundle may be regarded as a variable for
which we may substitute any manifold on which G acts effectively.

Vector Bundles

A special case of a G bundle is a real vector bundle. In this case the fiber is
a real finite-dimensional vector space V and the group is the general linear
group G = GI(V). An isomorphism of vector bundles is an isomorphism of

13This term apparently arises because a principal bundle generalizes the so-
called principal group of a Klein geometry (cf. Chapter 4).
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bundles that is linear on the fibers. Since the action of G on V is transitive
and effective, it follows that we may pass back and forth between the vector
bundle and the principal G bundle ¢. What is more, given any smooth linear
representation p: G — G(W), we can pass from the original vector bundle
to the associated principal bundle £ and then to the G bundle with fiber W
denoted by £ x,W. In fact, the fibers of the canonical map ExW — Ex, W
are just the orbits of the left G action G x § x W — £ x W given by

1

g (z,w) = (zg™", p(g)w).

Example 3.24 (Exterior power). If  is a vector bundle with fiber V', with
group GI(V) acting on V by the standard representation, then Gl(V) also
act on AP(V), the pth exterior power. Thus, we have an associated bundle
AP(€), called the pth exterior power of . *

Exercise 3.25 (Whitney sum). Let & and & be two vector bundles over
the same base B, and let A: B — B x B be the diagonal map. Then the
Whitney sum of the bundles is & ©&2 = A* (€1 x&2). Show that the Whitney
sum is associative and commutative (up to bundle isomorphism). W]

Exercise 3.26 (Quotient Bundle). Let & and £ be two vector bundles over
the same base B, and let p:& — & be a smooth injection covering the
identity on B and linear on fibers. Show that there is a canonical quotient
bundle &;/&, over B whose fibers are the quotients of the corresponding
fibers of &; and &;. a

Sections

Now let us consider sections (also called fields or tensors, in the case of vec-
tor bundles), the generalization of functions mentioned in the introduction
to this section.

Definition 3.27. Let ¢ = (E, B, n, F) be a bundle. A section over U C B
is a continuous (or smooth, in the case of a smooth bundle) map o:U — E
such that 7o = idg. The space of all (smooth) sections of 7 is denoted by
'(n). ®

In general, a field in an n-dimensional real vector bundle may be regarded
as a generalization of a vector-valued function on the base, which is locally,
of course, exactly what a field is in this case. In fact, the same may be said
about sections on a general bundle. The advantage of the generalization is
that, in many geometric circumstances, fields correspond more closely to
the nature of things than do functions. The close relationship between fields
and functions accounts for the fact that in the presence of a trivial bundle
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with a canonical trivialization t: E — F, there is a tendency to identify the
field o: B — E with the corresponding function to: B — F.

Let £ = (E, B,m, G) be a principal G bundle over B, and consider the
bundle n = £ xg F with fiber F', associated to £ by a smooth effective action
p of G on a manifold F. There is an important bijective correspondence

P: AO(Ea p) — P(77)

where

A°(E,p) = {f: E— F| f is smooth, and f(pg) = p(g~")f(p)}

and the section ¥(f): B — 7 is induced by the map P — P x F sending
p+ (p, f(p))-

Exercise 3.28.* Verify that the above correspondence is well defined and
bijective. Q

§4. Tangent Vectors, Bundles, and Fields

Tangent vectors have a schizophrenic nature. On the one hand, they have
a geometric aspect in which they appear as directions in space: if I stand in
a manifold, I can move in a variety of directions, which may be described
as the tangent vectors at my position. On the other hand, they have an
analytical aspect in which they appear as “directional derivatives,” which
is to say as first-order partial differential operators that, when applied to a
smooth function, give its rate of increase in the given direction. Although
these are “the same” notion in some sense, they nevertheless have a different
development. While “directions” strike the mind as a primarily geometric
notion, differential operators lie in the domain of analysis and can, for
example, be composed to yield partial differential operators of arbitrary
order whose geometric significance is often unclear.!4

Geometric Vectors

We start with the geometric view of vectors. In courses on advanced cal-
culus, we learn how, at least in certain cases, to find the tangent plane at
a point p of a submanifold M™ C R™. There are two methods, depending
on whether the submanifold is described parametrically or implicitly. Of

In fact, we are simplifying matters somewhat. The schizophrenic nature of
tangent vectors also includes a third personality, an algebraic one. If m, is the
ideal of smooth functions on M which vanish at the point z, then the space
of tangent vectors at z can also be identified with the dual space (m,/m2)*.
However, we do not pursue this aspect of tangent vectors here.
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course, in cases where both methods apply, they lead to the same tangent
plane which we shall denote by T, p(M)geometric- Later we shall drop the
term geometric.

The Parametric Method. Let p € M™, where M™ is a submanifold of
R™. Assume that p lies in a neighborhood of M™ which is defined para-
metrically by a parameterization f: (U,0) — (M™,p), where U is an open
set in R™ and ranko(f) = n. Then the tangent plane Tp(M)geometric is also
described parametrically as the image of the affine map A:R™ — R" given

by Av = f(0) + f'(0)v.

Exercise 4.1. Let 0,(R) = {X € M,(R) | X! = —X} be the 3n(n — 1)-
dimensional vector space of skew-symmetric matrices. Show that the Cayley
parameterization

Fron(R) — My(R), where f(X)=(I+X)(I—-X)"
is a smooth embedding whose image is an open subset of SO, (R). a

Example 4.2. Let us find the tangent plane at the identity I = f (0) of
the submanifold described parametrically by f in Exercise 4.1. Calculating
the derivative f/(0) from first principles, we have

lim L{f(RY) ~ f(O)} = Jim (I + K¥)(I = h¥) ' = 1)
.1 -1
= lim ={(I +hY) = (I = hY)}(I — hY)
=2Y.

Thus, the tangent plane at the identity is (a translated copy of) on(R)
itself, parametrized by the affine map A: 0,(R) — M, (R) given by A(Y) =
I+2Y. *

The Implicit Method. Let p € M™, where M is a submanifold of R"™.
Assume that p € U C R™, where U N M is defined implicitly as the zero
set of a smooth map F:U — R™™™ such that rank,(F) = n—m. Then the
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To(S")
= {v eR?| F(p)(v-p)=0}

T,(S") = T,(S"
T(Sh = {v eR?| F(p)v = 0}

the two geometrical placements difficulty separating
of tangent spaces tangent vectors

FIGURE 4.4.

tangent plane T, (M )geometric is also described implicitly as the zero set of
the affine map B:R™ — R" given by Bv = F'(p)(v — p).

Example 4.3. Let us calculate the tangent plane of the m-sphere S =
{z € R""! | -z = 1} by this method. Here F: R"t! — R is given by
F(z) = z -z —1. Calculating the derivative of F from first principles yields
F'(zx)v = 2z - v. Thus, rank,(F) = 1 for each z € S™, and the tangent
plane is given by T;(S5™)geometric = {z +v € R"*! | z . v = 0}. *

These constructions of the tangent planes suffer from several disadvantages.
The first one, which is not very serious, is that although the tangent plane
can be regarded as a vector space, it is generally not a vector subspace
of the ambient R™ (Figure 4.4). This can be fixed by translating each
tangent plane Tp,(M)geometric DY —p so that it becomes a subspace with
p corresponding to the origin (cf. Figure 4.4). We continue to denote this
by Tp(M)geometric- The more substantial second objection is that vectors
in distinct tangent planes may correspond to the same point in R™. This
can be remedied by means of the following construction, which defines the
geometric tangent bundle T'(M )geometric Of a smooth submanifold M of R™:

T(M)geometric = {(I% U) eR" xR" lp € M7U € TP(M)}

It is easy to see that T(M)geometric 1S always a smooth submanifold of
R™ x R™. For example, if M is given implicitly as

M ={peR" | F(p) =0},

where F:R™ — R"™™ is smooth with rank,(F) = n —m for all p € M,
then T'(M) is given implicitly as

T(M)geometric = {(P, 'U) eER"xR" I F(p) =0, F/(p)'u = ()},7
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namely, as the zero set of the smooth function
(F,B:R"xR" - R" ™ xR"™™,

where B(p,v) = F'(p)v. Let (z,y) denote the coordinates of the two factors
R™ x R™. Calculating the derivative, we have

9F,
’ )(p,’U - (631) (G_BL) )
ox; 0y,
which has rank 2(n —m) everywhere, since both main diagonal entries are
copies of F'(p), which has rank n — m.

Exercise 4.5. Show that if M is given implicitly by F = 0 as above, then
the first factor projecton m:T(M) — M has a canonical vector bundle
structure. ]

Analytic Vectors

As interesting and geometrically explicit as the preceding results are, there
still remains the major disadvantage that the definition of the tangent
plane and that of tangent bundle seem to depend on the way in which M is
embedded in R™. It is much more satisfying and useful to ask and answer
the following question: “Is there an intrinsic way of associating a tangent
plane and tangent bundle to a smooth manifold so that it is not only
independent of a particular embedding, but also so that if we do have an
embedding M™ — R"™, we can see that we get the same answer as above?”
Using Whitney’s embedding theorem it is possible, although awkward, to
show directly that the above construction is what we seek. However, it is
better now to abandon, temporarily, the geometric aspects of vectors and
pass to the analytic description of tangent vectors as directional derivatives.

To a vector v = (v1,...,v,) € R™ we may associate the differential
operator
0
D= 2 on
1<i<n

called the directional derivative in the direction v. In the case that v is a unit
vector in R™ and f:R™ — R is a smooth function, then the geometrical
meaning of D, (f)(z) is that it gives the rate of change of f in the direction
v. We codify the notion of a differential operator in the following definition.

Definition 4.6. A derivation at p € M™ is a real-valued operator D
defined on smooth functions whose domain contains a neighborhood of p
such that, for every pair f, g of such functions, D satisfies the following
two properties:
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(i) (Linearity) D(af + B9) = aD(f)+ BD(g) for all o, 8 € R,
(ii) (Leibnitz formula) D(fg) = D(f)g(p) + f(p)D(g). ®

The space of all derivations at a point p clearly constitutes a real vector
space, which we call the analytic tangent space of M at p and denote by
Tp(M )analytic- Moreover, the two properties imply that D(c) = 0 for any
constant function c. It is not clear at this stage that Tp,(M)analytic is finite
dimensional, although we shall soon see it is of dimension m. Later, when
we have seen that this definition of the tangent space is in full agreement
with the geometric definition, we shall drop the term analytic.

We need several simple results before we can compare analytic and ge-
ometric vectors. The first shows that smooth maps induce linear transfor-
mations between the analytic tangent spaces at corresponding points. In a
word, it says that we can differentiate smooth maps.

Theorem 4.7.

(a) (Derivative) If g: (M™,z) — (N™,y) is a smooth map, then g induces
a linear map gug: T (M )anaytic — Ty(NV)analytic defined by (guzD)h =
D(hg).

(b) (Chain Rule) If g:(M™,z) — (N™,y) and f:(N™,y) — (PP,z2) are
smooth maps, then (fg)sz = fiyGra-

Proof. Both statements are simple exercises. n

Corollary 4.8. If f: M — N is a diffeomorphism in some neighborhood of
xz € M, then fiz: To(M)anaytic — Tf(z)(N )analytic 1S an isomorphism.

Proof. Let x € U C M with U open and f:U — f(U) a diffeomorphism.
Let g be the inverse diffeomorphism. Applying the chain rule to gf = idy
and fg = idfw), we get id = guyfuz and id = fzg4y. Thus f,; is an
isomorphism. ]

The next result is a special case of Taylor’s theorem and the result that
follows it applies it to determine the derivations at a point in Euclidean
space.

Lemma 4.9. If f is a smooth function defined in a neighborhood of p € R™,
then

@) =0+ Y (@ p) {g—;@) n ai<w>} ,

1<i<n

where the functions a;(z) are smooth and vanish at p.
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Proof. Write

f(z)—f(p) =/01 a—ﬂp—Jr(;i:p—))dt= > (xi—pi)/o (%_(pﬂ(z—p))dt-

t 1<i<n

Now, integrating by parts, we get

1
| 5o+ ta e

2L g+ tla—p)| /lt D ST AL
= 311?1‘ (p+ r—p o o e 615,(91'] J J
= L@ +a),
where the a;(x) are obviously smooth and vanish at p. |

Proposition 4.10. If U is an open subset of R™ and D 1is a derivation at

p€e U, then 5
D = z D(IEz)'a?z )

1<i<n

Proof. Write

f@) = 10 + Y (=P g () + as(@)),

1<i<n

as in the lemma. Applying D to both sides yields
0 of
Df =0+ Z D(z;—p;) (a—xi(p)+ai(z))+0= Z D(:v,)a—zl(p) |

1<i<n 1<i<n

Corollary 4.11. dim T,(R")analytic = 7.

Proof. The formula shows that T,,(R")analytic is spanned by the derivations

0

Di - 8.’L'i

P
These derivations are linearly independent since we obtain A; = 0(1 < j <
n) when a putative relation y_ A\;D; = 0 is applied to the function z;. W

Corollary 4.12. Let f: M — N be a smooth map. Then the rank of f at
p € M is the rank of fup: Tp(M)anatytic = Tr(p) (N )analytic-
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Proof. This is a local question, so we may assume that M is an open set
in R™ (with coordinates z,...,z,,) and N is an open set in R™ (with
coordinates zi,...,T,). We show that in this case the rank of fap is the
same as the rank of the Jacobian matrix of f at p. Set D; = §/0x; and
write
(f*p)D,; = Z aiij 1 S 7 S m.
1<j<n

Then a;; = ((fup)Di)z; = Di(z; o f) = Di(f;) = (8f;/0z;)(p). Thus, the
Jacobian matrix is, in fact, the matrix of the linear transformation f., in
the basis D;. ]

Corollary 4.13. If M — N is a smooth map whose derivative
Guz * Tp(M)anatytic = Ty(p)(N)analytic i a linear isomorphism for a given
point p, then g is a local diffeomorphism (i.e., p has an open neighborhood
U such that g(U) is open and g | U is a diffeomorphism onto its image).

Proof. The isomorphism implies that M and N have the same dimension
m and that f has rank m at p, so the inverse function theorem applies. B

Identity of Geometric and Analytic Vectors

At this stage it is possible to compare the analytic vectors to the geometric
ones. Thus, suppose we have a smooth submanifold of Euclidean space
t: M™ C R"™ given as the zero set of a smooth function F' = (Fy,..., F,_,):
R™ — R™"™™ of rank n — m. Then

TP(M)geometric = ker F'(p); R® - R ™,
Now the smooth inclusion ¢: M™ C R™ induces a linear map
Lap: TP(Mm)analytic - TP(Rn)analyticv

If D € Tp(M™)analytic, then 1., D € Tp(R™)analytic, and by Proposition 4.10
we can write

0
tapD = Z via—xi, where v; = (t.pD)z; € R.
1<i<n

We claim that (vi,...,vn) € Tp(M)geometricc To see this, note that
Fj(«(z)) = 0 for all z € M and for all j. Thus, for D € T,(M)analysic,
we have

0 = D(Fjt) = (Fjt)ep(D) = Fis(p) (tap(D))

0 OF;
= Fiu | D vig—|= > vz
1<i<n Oz; 1<i<n O

= F'(p)v = 0 = v € Tp(M)geometric-
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This yields a linear map

Tp(M)analytic - Tp(M)geometric
D ((tepD)z1, - -+, (tapD)2n).

To show that the map is injective (and hence an isomorphism since the
dimensions are the same), it suffices to show that if (tapD)z; =0,1<j<n
then Df = 0 for every smooth function f defined on a neighborhood of
p in M. Now the value of Df is not altered if we restrict f to a smaller
domain about p. But if the domain is small enough, then f extends to a
neighborhood of p in R™, that is, f = gt for g smooth on a neighborhood
of p in R™. Thus,

Df=le)=gmmuAD)=(uADDg=§:w§%@0=0

since v; = (t«pD)z; = 0. These remarks yield a canonical identification
between Tp(M™ )analytic and Tp(M)geometric in the case M C R™.

The Tangent Bundle

Now let us return to the tangent bundle. We want to give a definition of
T(M) as a smooth manifold intrinsically associated to the smooth manifold
M and also to show that it is a Gl,,(R) bundle with fiber R™ under the
standard action.

For each manifold M we define T'(M )analytic as a set to be the disjoint
union of the vector spaces Tp(M), p € M. Denote by the canonical
projection map m:T(M)analytic — M sending the vector v € Tp(M) to
the point p € M. If f: M — N is a smooth map, then we define a map
fi: T(M)analytic = T(NV)analytic by sending the vector v € Tp(M) to fupv €
Tj(p)(N) such that the diagram commutes.

S
T(M)analytic T(N)a.nalytic

ml f lmv

M—N

Now we put a topology on the sets T'(M )analytic by modeling pieces of it
on a special case of the geometric tangent bundle. We do this first for the
case M = U = open set in R™. As sets we have the identification
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T(U)analytic = T(U)geometric =U x Rna

0
(.’1:, 21:'01,3?1) — (z, (v1,v2,...,0,)).

Now the right-hand side comes equipped with a topology, a smooth struc-
ture, and even the structure of a (trivial) smooth GI,(R) bundle. The idea
is to pass this to T'(M)analytic-

}I_Jet a= {(U3 ®)} be a smooth atlas for M. Then :U — ¢(U) C R™ is
2, : [;);115011{121:phlsm onto its image and @,: T(U)analytic = T(9(U))analytic =

fI‘he quology. A set W C T(M)analytic is open < . (W NT(U )analytic)
is open in p(U) x R™ for all (U, p) € 4.

The Atlas for the Smooth Structure. Take T = {(T(U )
(U, ¢) € 4} {(T(U)anatytic, ) |

The Bundle. Again take B = {(T(U)analytic, =) | (U, ) € 4}.

Exercise 4.14.* Show that T'(M)analytic is @ smooth manifold of dimension
2m and that (T'(M)anatytic, M, 7, R™) is a smooth Gl,,,(R) bundle that can
be canonically identified with the geometric tangent bundle T'(M) i

whenever M is a submanifold of R™. geOmemECI

From now on we drop the decorations analytic and geometric in reference
to tangent vectors and bundles.

Since the action of Gi,(R) on R" is faithful, we have available the bundle
< G bundle correspondence, described on page 36, and so we may speak
of the bundle associated to any representation of Gi,(R).

Exercise 4.15.* Let M and N be smooth manifolds and let mpr: M x N —
M and my: M x N — N be the canonical projections. They induce maps
WM*ZT(M X N) — T(M) and 7. T(M x N) — T(N), which we can
co.mbme into a map mare X T T (M X N) — T(M) x T(N). Show that
this map is a diffeomorphism. [Hint: Use the atlas for M x N to reduce the
question to the case where M and N are open sets in Euclidean spaces.] O

Exercise 4.16.* Continuing the notation of the last exercise, we fix p € M
and ¢ € N and define

iM: M — M xN, int N> MxN,
z— (z,q) y— (p,y),
ar: Tp(M) x Ty(N) — T,(M), Ln: Tp(M) x Ty(N) — Ty(N),
(u,v) — u, (u,v) — v.
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Show that the following maps are inverse to each other:

T Mx(p,q) X TN«(p,q)
Tip.g)(M x N) = Tp(M) x To(N).
LM*pHM + LN*qH D

Exercise 4.17. Show that a smooth manifold M of dimension n is ori-
entable if and only if the nth exterior power A"(T'(M)) is a trivial line
bundle over M. [Hint: Choose a never-zero section e € r(\*(T(R"))). If
A"(T(M)) is trivial, we may choose a never-zero section o € r(A\™(T(M))).
Consider the charts (U, ) such that, for each z € U, o(z) and e(p(z))
correspond up to a positive scalar factor under the isomorphism

Paz N (T (M) = X"(Tya) (R™)):
Show these charts yield an orientation for M.] Q

It sometimes happens that the tangent bundle T'(M) of a smooth man-
ifold M may be described by a G atlas, where G is some closed subgroup
of Gl,(R). In this case T'(M) acquires a G structure, so that it becomes a
G bundle. In this case we say that the manifold M has a G structure. For
example, every manifold has an O,(R) structure (cf. [W. Boothby, 1986],
p. 195). In general, if H is a closed Lie subgroup of G and a G bundle has
an atlas involving only H, we say that the H structure defined by such an
atlas is a reduction of the structure group from G to H.

Here is a useful result generalizing part of the mean-value theorem.

Proposition 4.18. Let f: M — N be a smooth map of smooth manifolds.
Assume f.: T(M) — T(N) is the zero map on each tangent space. Then f
is constant on each component of M.

Proof. It suffices to show that for any chart (V,%) on N, f is constant
in each component of the open set f ~1(V). Let p, ¢ lie in one component
of f~1(V). We show that f(p) = f(g). Let 0:(1,0,1) = (f7(V),p,9)
be a smooth path joining p and ¢. Now consider F' = 1 fo:I - R™. By
the chain rule we have F’(t) = 0 for all ¢, so by the ordinary mean-value
theorem, each of the m components of F' is constant. Thus, F' is constant,

and so f(p) = ¢~ F(0) =y F(1) = f(q)- u
Next we generalize part of the fundamental theorem of calculus.

Proposition 4.19. Let M and N be smooth manifolds with M connected
and N having trivial tangent bundle, with trivialization t:T(N) — V. Let
f,9: M — N be smooth maps satisfying
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(i) f(p) = g(p) for some point p € M,
(ii) tfe =tge as maps T(M) — V.
Then f = g.

Proof. It suffices to show that f(q) = g(q) for all ¢ € M. But M is
connected, so we may choose a smooth path o:(1,0,1) — (M, p,q), and we
are reduced to demonstrating the result for the case M = R. M’ore,over by
coverin.g o(I) with coordinate charts and using the compactness of I 7 we
can w'rlte o as a composite of finitely many paths, each one lying in a siilgle
coordinate chart. Thus we are reduced to considering the case M = R and
N =R"™. Now, if tf, = tg. for one trivialization, then the same is true for
any other trivialization, so writing f; and g; for the coordinates of f and
g, we see that condition (ii) becomes

ofi 0gi .

%~ ot for all .
Thus, fi(t) = gi(t) + C; for some constant C;. But by (i), all the C; must
vanish, and so f = g. Z n

Vector Fields

A vector field on a smooth manifold M is a smooth section of the tangent
bundle T'(M). In particular, it is a map X associating to each point p € M
a vector X, € T,,(M). Let us see what smoothness means in terms of local
coordinates. Let (T'(U),p«) be a bundle coordinate chart corresponding

to the chart (U, ) on M. Setting V = ((U), we have the commutative
diagram of smooth maps:

TU) £ T(V) =V xR™
l l
v % v

The horizontal arrows are diffeomorphisms that identify the left and right

sides. Thus, we may write a vector field X on U in these coordinates as a
map

Y:Vo>VxR™,

Y(a:).= (m,al(m),...,a,,.,(m)). Clearly, Y (and hence X) is smooth if and
only if each an,: V' — R is smooth. We may say this is an invariant way by
noting that

0
Y smooth = Y (f) = Zaz(a;)%(x) is smooth for all smooth f:V — R.

Conversely,
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Y(f)= Zaz(x)gf—(x) smooth for all smooth f:V — R
- 8x,~

= Y(z;) = Za,(w)%(x) = a;j(z) is smooth for all j

=Y smooth.

Proposition 4.20. 4 section X of T(M) is smooth < X(f) is smooth for
all f € C®(M).

Proof. = To check if X(f) is smooth, we need only check that its re-
striction to each chart U is smooth. But by the remarks above, X smooth
implies that X (g) is smooth for all g € C*°(U). Now if f € C°(M), then
f|UeC=U), andso X(f) | U= X(f | U) is smooth. Thus X(f) is
smooth.

« Now assume that X(f) is smooth for all f € C®(M). If we can
show that X(g) is smooth for all g € C*°(U), then we will be done. But
for each point p € U there is a function h € C*°(M) that is identically
1 on a neighborhood V of p and identically zero on a neighborhood of
M —U (cf. [W. Boothby, 1986], pp. 193-195, on partitions of unity). Thus,
hg € C®(M) so X (hg) is smooth on M. But X(g) = X(hg) on V, and so
X (g) is smooth on V. Since p was arbitrary, X (g) is smooth on all of U. M

The mapping properties of vector fields are not very good. If p: M — N
is a smooth map and X is a vector field on M, then ¢, (X ) is not in general
a vector field on N. It can generally be regarded only as a section of the
pullback bundle ¢*(T(N)). If ¢ is injective, then ¢ (X) may be regarded
as a vector field on p(M). The following definition is the best we can do
by way of a naturality property.

Definition 4.21. Let p: M — N be a smooth injection and let X and Y
be vector fields on M and N, respectively. We say that X and Y are ¢
related if X(fo) = (Y (f))p for all f € C®(N). ®

Derivations

We may now assemble the properties of smooth vector fields X on M which
say that

(1) X:C®(M)— C*(M) is an R-linear map,
(2) X(fg)=X(f)g+ fX(9)-

Property 2 merely restates the definition of a derivation at p for each p € M.
The only thing new here is that, for X smooth, X (f) is also smooth. In fact,
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these properties say that the smooth vector fields on M are the derivations
Der(M) on C®(M).

The derivations Der(M) constitute a vector space over R (of infinite
dimension). But there is an additional structure, a multiplication called
bracket and denoted [X, Y], which turns Der(M) into a Lie algebra.*® This
operation is defined by [X,Y] = XY — Y X and satisfies

(1) (Bilinearity) [, |: Der(M) x Der(M) — Der(M) is R-bilinear,
(2) (Skew symmetry) [X,Y] = —[Y, X],
(3) (Jacobi identity) [[X,Y], Z] + [[Y, Z], X] + [[Z, X],Y] = 0.

These properties are all easy to show. In addition, there is the following
naturality property.

Lemma 4.22. Let ¢: M — N be a smooth injection. Let X; and X, be
vector fields on M, and let Y, and Y, be vector fields on N. If X; is ¢
reiated to Y; for j = 1,2, respectively, then [X1,Xs] and [Y1,Y2] are ¢
related.

Proof. Since (Y} f)p = X;(fy), we have

(Y1, Ya]f)p = MYaf)p — (Y2Yif)e
= X1((Yaf)p) — Xo((Y1)p)
= X1(X2(fp)) — Xo(X1(fp))
= [X1, X2](fep)- |

We end the section by showing the local coordinate expression for the
bracket of two vector fields. We have

- 9 9
X = ai(w)am’ Y= E bj(x)%,
i J

1<i<n 1<j<n

ob; Oa; ) 0
X’Y = z‘—:, —_p 2\
[ ] Z {a Bwi b’axi} afllj'

1<i,j<n

Exerci§e 4.23. (i) Let D € Der(M). Assume that f € C*°(M) vanishes
on a neighborhood V of p € M. Show that Df also vanishes on V.

] 1((111) Show that every derivation D € Der(M) arises from a smooth vector
e
. Q

15See Chapter 3.2.6 for the formal definition.
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§5. Differential Forms

Let us begin with a rough and ready description of p-forms for p < 2. The
0-forms (with values in a finite-dimensional vector space V) on a manifold
M are just the V-valued functions on M. The 1-forms generalize the deriva-
tives of functions on M. The 2-forms are used as a way of formalizing the
necessary conditions on a 1-form for it to be the derivative of a function.
Now let us give the formal definition of a 1-form.

Definition 5.1. Let M be a smooth manifold and V' be a finite-dimensional
vector space. A smooth V-valued 1-form on M is simply a smooth map
w:T(M) — V that is linear on each fiber T;(M). When V. = R (or
dim(V) = 1), we speak of a smooth 1-form on M. More generally, if £
is a flat vector bundle over M, a smooth E-valued 1-form on M is simply
a smooth map w: T(M) — E restricting to a linear map w: T.(M) — E;
on each fiber of T'(M).

Exterior Derivative of a Smooth Function

If f: M — R is a smooth function defined on a smooth manifold, then
a 1-form arises from differentiation as follows. The derivative of f is
fu:T(M) — T(R), and since T(R) has a canonical trivialization

TR)~R xR,

(tafl) — (t2)

we may write f. in the form fuzv = ( f(z), f'(z)v). Then define the 1-
form df:T(M) — R by the formula df(v) = f'(z)v for v € T(M). In
exactly the same way, if f: M — N and T (N) has a canonical trivialization
T(N) = N x V (for example, when N = V is a vector space), we can define
a 1-form df with values in the vector space V, which is well defined (relative
to the given trivialization). In every case, the form df is a smooth 1-form
on M, which we call the ezterior derivative of f.

Exercise 5.2. If we are given a trivialization :T(N) — V, then any
smooth map 7: N — GI(V') determines a new trivialization by twisting the
original according to 67:T(N) — V, where 07 (p,v) = (p,7(p)0(v)). Show
that the exterior derivative computed relative to the trivialization 6 is the
same as that computed relative to the trivialization 67 if and only if 7 is
constant. 6 Q

16This exercise shows that, in general, it is impossible to have a canonically
defined exterior derivative for forms with values in a vector bundle E over M,
since the differentiation is not independent of the coordinate changes. There is,
however, an important exception to this. In the case of a flat bundle E, the
coordinate changes are constant; in this case, we do have exterior derivatives.
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P(r(;position 5.3. If v € T,(M) and f: M — R 1is smooth, then df (v) =
v(f)-

Proof. Write f.,v = a% | ) Applying both sides to the identity function
h:R(;—» R, h(t) = t yields v(f) = v(hf) = (fipv)(h) = a. Thus, fi,v =
v( f)ﬁ| o) So, by the definition of d, we get the result. |

Definition 5.4. If f is a smooth V-valued function on M and X is a
smooth vector field on M, we define X (f)|, = fi(X5p)- ®

Exercise 5.5. If e; is any basis of V, and we write f = Y f;e;, show that

X(f)lp =22 fi(Xp)ei. o

Interpretation of dx

The notion of the exterior derivative of a mapping allows us to throw some
light on Leibnitz’s differential notation for the calculus. For example, every-
%Lw is ffmmiliar wit'h the expression for the derivative of y = f() in the form
2 = f'(x) or, written more symbolically as “differentials” by dy = f'(z)dz.
The latter expression can be given the following interpretation. The smooth
map f:R — R given by y = f(x) has derivative f,: T(R) — T(R), which,
if written in the canonical trivialization for T'(R) with coordinates (z,v),
has the form f.,v = (f(z), f'(z)v). Thus, the exterior derivative df is given
by dfz(v) = f'(z)v. In particular, if we regard z: R — R as the identity
function, then dz(v) = v. Hence df;(v) = f'(z)dz(v), that is, dy = f'(z)dz.
This identifies the Leibnitz dy with the exterior derivative of the mapping
y = f(z). The form dz has the interpretation as “the general infinitesimal
change of z” in the sense that if we apply it to any “specific infinitesimal
change of z” in the amount Az € T,(R), we get dz(Az) = Az. Similarly,
dy is “the general allowable infinitesimal change in y = f(z)” in the sense
that if we apply it to any “specific infinitesimal change of ” in the amount
Az € T,(R), we get dy(Az) = f'(z)Ax for the resulting specific change in
Y.

Interpretation of Total Derivatives

Now let us look at the connection between the exterior derivative and
the Leibnitz differential notation for smooth maps f:R™ — R. Let (z,v)
denote the coordinates for points in
T(R™) ~ R" x R".
S
We have the ith coordinate function z;: R® — R, z;(z) = z;. As in the
one-variable case, there is the convenient confusion between the function
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and the coordinate. The exterior derivative dz;: R™ x R" — R is given by
dz;i(v) = v;. Now write fuv = (f(z), f'(z)v) so we see that the exterior
derivative of f is given by

df(v) = fl@ =Y g%v,: > gﬂ{ida:i(v).

1<i<n ¢ 1<i<n

Suppressing the vector v yields df; = ZISM(@ f/0x;)dz;, which is the
Leibnitz total derivative. For another discussion of the relationship between
the old and new notation, see [M. Spivak, 1970], pp. 153-154.

Ezxterior Differential Forms

Now we come to the question of higher derivatives. As usual in modern
differential geometry, we shall be concerned only with the skew-symmetric
part of the higher derivatives. In essence, what we shall be doing is taking
the partial derivatives with respect to the base (i.e., manifold) variables
and skew-symmetrizing the result, thus forgetting about the part of the
higher derivatives that vanish under this procedure. However, this will not
be made explicit in our treatment. The part of the higher derivative that
disappears has not been studied much in differential geometry since Elie
Cartan showed how useful it is to consider only the skew-symmetric part,
that is, the exterior derivative. The old masters did use the symmetric part,
and more recently it seems to have found an application in probability
theory (cf. [P.A. Meyer, 1989], [J.E. White, 1982], and [B.L. Foster, 1986]).

What are we going to differentiate? We are going to differentiate V-
valued p-forms on M to obtain V-valued (p+1)-forms on M. These p-forms
consist of the following generalizations of 1-forms.

Definition 5.6. Let M be a smooth manifold and V be a finite-dimensional
vector space. A smooth V -valued p-form'” on M is a smooth map w: T(M)®
...®T(M) — V whose restriction to any fiber T,(M)®... @T:(M) -V
is multilinear and totally skew-symmetric in its vector arguments for all
z € M. When V = R (or dim(V) = 1), we speak of a smooth p-form on
M. &

Although the definition is for general p, for the most part we shall need to
work only with p < 2 or 3. Note that, by definition, A°(M,V) is declared
to be the V-valued functions on M. Also note that AP(M,V) = 0 for
p > dim M.

17 Just as in the case of 1-forms, we could consider forms with values in a flat
vector bundle over M. Once again exterior differentiation is canonically defined
(cf. Footnotes 10 and 11).
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The p-forms make up an infinite-dimensional vector space denoted by
AP(M,V). We set
AM V)= P AP, V).

0<p<m

Note that a smooth map f:M — N induces a backward map f*:
AP(N,V) — AP(M,V) defined by

(ffw)e(X1y. .y, Xp) = wp@y (fuXa,. .., fuXp), where Xy,..., X, € To(M).

The ezterior (or wedge) product of a Vj-valued p-form w; with a Va-

Vallléed g-form wy is a Vi ® Va-valued (p + ¢)-form wy A we. It is defined
by

w1 A wg(vl, “en ,'up+q)

= Z (—1)"w1 (’UU(I), . ,'Uc,(p)) ® (JJ2('UU(p+1), ey ’Ug(q)).

o runs over all
(p,q) shuffles

Exercise 5.7. Show that w; Aws is a (p + ¢)-form. a

Exercise 5.8. Show that if f: N — M is a smooth map, then f*(w; Aws) =
f*(w1) A f*(wa). Q

Now we are going to describe the totally skew maps at a point. Let U and
V be finite-dimensional vector spaces of dimension u and v, respectively.
Let e1,...,e, be a basis of U, e],...,el be the dual basis of U*, and
fi,--., o be a basis of V. Let the symbol I,J,... denote the sequence

{t1,32,...,%p}, {41,725+ dp},--., where 1 <4y < i3 < ... < i, < u, etc.
We use the abbreviations

er = (€iy,---,€i,), er=(e,...,€; ), etc.

Exercise 5.9. Show that
(i) INJ#0=>e;Aey =0,

(ii) I N J =.(Z) = e} N ey = (—1)%ek, where K is the list of indices I, J
written in increasing order, and o is the shuffle permutation mapping
{I,J} to K. a

18 _ . L
o is a shuffle permutation if r < s = o(r) < o(s) whenever both r and s lie

in {1,2,...,p}, or both liein {p+1,...,p+ ¢}
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Lemma 5.10. The vector space of all totally skew-symmetric maps

UxUx..xU—-V
——

p copies

has dimension %) v and has a basis given by €} f;, where I Tuns through

all the possibilities described above and1<j<w.

Proof. First note that e}(es) =017 (=1 if I = J and vanishes otherwise).
Now given an arbitrary totally skew map F:UxU...xU — V, we can
express it in terms of the basis for V as F = Y F; f;, where Fj: UxUXx...X
U — R are the various components of F in the basis of V. Clearly, the F; are
themselves totally skew maps. Thus it suffices to consider the case V = R.
The independence of the e is easily seen, forif 3" are} = 0, then evaluating
on e shows ay = 0 for all J. Conversely, evaluating F — Y F'(er)e] on any
ey always gives 0, so it follows from the multilinearity of the expression
that the e} span the space of totally skew maps. |

Next we consider p-forms in the case M = R™. Since T(M) = R™ xR™,
we have the canonical identification

M) ®...0® T(M)~R™x(R™ ©...8 R™).
(p copies) (p copies)

Let us consider the coordinate function z;: R* — R, with
dz;: T(R") — R,
(z,v) = v;.
Now the daci|z form a basis for Tx(R™)*, and thus
de; = dz;, ANdzi, A... AdTi,

(where I is the sequence 1 <13 < ip < ... < ip < m), restricts to dar1|z to
give a basis for the totally skew-symmetric R-valued functions Tz (R™)®P —
R. It follows that an R-valued p-form on R™ has the form w = S ar(z)dzr,
where the summation takes place over the sequences I described above and
the coefficient functions aj(x) are smooth.

Exercise 5.11. Show that the p-form w = Y ar(z)dz; on R™ is smooth
& the coefficient functions as(z) are all smooth. a

Exterior Differentiation of Forms

Now we define the ezterior derivative d: AP(M,V) — APTY (M, V) as fol-
lows. Choose a coordinate chart (U, ) on M and a basis fi,..., foof V.
In terms of this coordinate system, we define
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a (3 arjderf;) = Y (dary) A da f.

To see that this is well defined, (i.e., independent of the choice of coordinate
chart (U, ¢) and of the basis of V'), we could, by brute force, try to compute
the effect of changing these choices. However, it makes better sense to
follow the more subtle route of showing that d, defined with respect to

a coordinate system as above, satisfies several properties and that these
properties characterize it.

Lemma 5.12.

(i) d(w1 +w2) = dwy + dws.

(i) d(w1 Aws) = dwy Awa + (—1)*w; A dws, where k = deg(w,).
(iii) d(dw) =0, or, more briefly, d* = 0.

Proof. (i) is obvious.
(ii) By virtue of (i), we may assume that w; = f dzse, and wy = gdzsh
where {ep} is a basis of Vi and {hq} is a basis of V5. Then v
w1 Awe = fgdzr Adzjep, ® hy, so
d(wi ANwe) = d(fg)dzr Ndxje, @ hy
= (gdf + fdg)dx; Ndzjep, ® hy
=gdf Ndrr ANdxjep, @ hg + fdg ANdxr ANdxje, ® hy
=gdf Ndzg Ndz e, ® hg + (—1)*f dxy Adg Adrye, ® hy
= dw; Awa + (=1)*w; A dws.

(iii) Again by virtue of (i) we may assume that w = f dxep,. Then

0
dw = d(f dxep) = df Ndxe, = —a%dmi Adzrep, and so

2 of 0?
d'w=d <Z Bzridmi A dw;ep) = Z mdxj Adz; Adzep, =0,

. 92 f ) .. Y
since the terms zr—5--dx; A dz; are skew symmetric in the indices ¢ and
7. ]

Lemma 5.13. If two vector-valued operators on forms satisfy the three

properties of the previous lemma and agree on functions, then they are
identical.

Prf)of. Let d’ be another operator on forms defined in an open set of R™
which Sjcxtlsﬁes the three properties of the previous lemma. To verify that
d = d', it suffices to show that dw = d'w for w = f dzre,. We have
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d'(f dzrep) = (d' f)dzrep, + f d'(dzrep) (by ii)
= (df)dzre, + f d'(dzrep)  since d’ = d on functions
=dw + fd'(dzrep) (by 1).

Thus it suffices to show that d'(dz) = 0, where
drp = dz;, ANdziy, A... Ndzi, = dzi, Nz, A...Nd'z;,

by equality on functions. Thus, d’ (dz;) = d'(d'zy) = 0 inductively by (ii)
and (iii). n
Corollary 5.14. There is a unique operator d: AP(M,V) — APYH(M,V),

defined for all p and for all V, that satisfies (i), (ii), and (iii) and reduces
todf =Y. g—%dxi on functions.

Proof. By the lemma, the ds defined in terms of the various coordinate
charts must all agree on the intersections of these coordinate charts. ]

By a procedure like that above, we could also show that our d is the
unique operator d: AP(M) — AP*!(M) satisfying (i), (ii), and (iii) and
reducing to df =Y %dzi on functions.

By Proposition 5.3, df (X) = X (f) for V-valued functions on M. There
are similar expressions for the derivative dw of a p-form w evaluated on
p + 1 vector fields Xo, ..., Xp. The most important case for us is the case
p = 1. We demonstrate this case and leave the rest as an exercise.

Lemma 5.15. Let w be a V-valued 1-form on the smooth manifold M,
and let X and Y be two vector fields on M. Then dw(X,Y) = X(w(Y)) —
Y (w(X)) - w(X, Y)).

Proof. It suffices to verify this formula for 1-forms of the form w = fdg
since every 1-form is locally expressible as a sum of such terms.

{LHS}: dw = df A dg so dw(X,Y) = df (X)dg(Y) — df (Y)dg(X)

= X(NY(9) - Y ())X(9);

{RHS}: X(w(Y)) - Y (w(X)) —w(X,Y])

X(fdg(Y)) = Y(fdg(X)) — fdg([X,Y])

X(fY(9)) - Y(fX(9)) — fIX,Y)(9)

X(f)Y(9) + fXY(9) - Y(£)X(9) — fYX(g9) — f[X,Y](9)
X(f)Y(9) + fIX,Y)(9) - Y ()X (9) — fIX,Y)(9)

= X(f)Y(9) - Y(f)X(9)

Hence, {LHS} = {RHS}. |
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Exercise 5.16.* Show that if w is a p-form, then

dw(Xo, -, Xp) = 3 (1) Xi(w(Xo, .-, Xiy .., Xp)

0<i<p
+ Y UM WX, X Xoy s XKy Xy X)
0<i<j<p
where a “hat” means “omit this entry.” a

Proposition 5.17 (Naturality of d). If f: M — N is a smooth map, then

" the following diagram commutes for all p.

AP(N,V) .__d_9 AP+1 (N, V)

7| |
AMY)y —— 4wy

Proof. It suffices to check the result for maps between Euclidean spaces.
The proof is by induction on p. By linearity we may assume the p-form is
w = gdz. For p =0 we have

F*(dg)(X) = dg(f X) = (f X)g = X(f*(9)) = X(9f) = d(9f)(X),

and so f*(dg) = d(f*(g)).'® Now assume the result holds in dimension <p.
Writing dz; = dz s A dzk, with |I| = p and |J|, |K| < p, we have
d(f*w) =d(f*(gdzs N dzk))

=d(f*(gdzs) A f*(dwk))

= d(f*(gdzs)) A f*(dek) £ f*(gdzs) Ad(f*(dzk))

= (f*d(gdzs)) A f*(dzk) = f*(gdzs) A f*(d(dzK)) (by induction)
f*(d(gdzy) Ndrk)£0
f*(d(gdzy N dzk))
[ (dw). u

Il

We remark that the naturality of the exterior derivative is perhaps its
most important property. It says that d is a version of differentiation that
is independent of the coordinate system used. Thus, it constitutes a ba-
sic ingredient in the search for “a theory of differential equations that is
independent of the coordinate system used to describe them” (cf. the Intro-
duction to Chapter 8). In fact, every differential equation may be expressed
in terms of the operator d (cf., e.g., [S.S. Chern and C. Chevalley, 1952]).

19Note that f*(g) = gf (composition).
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Change of Coefficients

If p: Vi — Vz is a linear map of vector spaces,?® then it induces a linear

map
0u: AP(M, V1) — AP(M, V3)

defined by @ (w)(X1,. .-, Xp) = @u(W(X1, .- , Xp)). It is clear that such a
coefficient homomorphism always commutes with d.

Coefficient Multiplication

In the case that the coefficient vector space V has a multiplication given
by m:V®V — V (ie., a bilinear but not necessarily commutative or
associative map), then we obtain a corresponding map

me: AM,V®V) — AM,V)
w = ma(w),

where (M. (w))(X1, ..., Xp) = m(w(Xy,... , Xp))-
This map turns A(M, V) into an algebra with multiplication given by

AP(M, V) x AI(M, V) L APH(M,V @ V) 15 APH(M, V).

Exercise 5.18. d(m. (w1 Awz)) = ma(dwi Aw2) + (=1)Pmy (w1 A dws). O

Let us now consider the case where the coefficients consist of a graded
associative algebra B = @, B-- As above we denote the multiplication
in B by m: B® B — B. Then the multiplication on forms is

AP(M, B,) x AYM, B,) 2 APYI(M, B, © B,)) = APTU(M, Brys)

and yields a bigraded associative differential algebra, as the following exer-
cise will show.

Exercise 5.19. Let B be as above.
(i) Show that (dm. (w1 Aws)) = M (dwy A wa) + (=1)Pma (w1 A dws).
(ii) Show that m.(m.(w1 Awz) A ws) = Ma(w1 A my (w2 Aws)).

(iii) If B is graded commutative (e.g., B is an exterior algebra or a Clifford
algebra), show that m. (wp,rAwg,s) = (=1)P"+ 9 m, (wg,s Awp,r), Where
wp,r € AP(M, B;), etc.

20This may also be a morphism of flat vector bundles.
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A particularly interesting case of coefficient multiplication occurs when
V = g, a Lie algebra.2! We denote the product here by (w1, w2) — [w1,w2].
In this case we obtain a differential graded Lie algebra defined by the prop-
erties given in the following exercise.

Exercise 5.20.* Let wp,wq,w, € A(M, g) be forms of dimension p, ¢, and
r, respectively. Show that the multiplication [, | on A(M, g) satisfies the
formulas

(i) dlwp,wq] = [dwp, wq] + (—1)P[wp, duwy],
(i) [wg,wp] = (=1)P* wp, wg,
(iif) (=1)"7[[wp,wq), wr] + (=1)P[[wq, wr], wp] + (=1)7[[wr, wp], wq] = 0.2
Note that if w € A'(M, g), then the mapping T(M) @ T'(M) — g sending
(X,Y) — [w(X),w(Y)] is skew symmetric and is therefore an element of

A2(M, g). The relation between [w(X),w(Y)] and [w,w](X,Y) is given by
the following lemma.

Lemma 5.21.
(w1, wa] (X, Y) = [w1(X), w2 (V)] + [w2(X), wr(Y)]-

In particular,
[w(X),0(¥)] = 5l w](X, V).

Proof.

[wi,w2](X,Y) = (ma(w1 Aw2))(X,Y)
=m((w; Aw2)(X,Y))
=m(wi(X) @w2(Y) —wi(Y) ® wa(X))
= (w1 (X), w2 (Y)] = [w1(Y), w2 (X)]
= [wi(X), wa2(Y)] + [w2(X), w1 (Y)] =

The proof of the following result has already been shown, but we state
it explicitly for future reference.

Proposition 5.22. Let f: M — N be a smooth map and let p:h — g be a
Lie algebra homomorphism. Then the map . f*: A*(N,h) — A*(M,g) is
a homomorphism of Lie algebras.

It is the study of the deep meaning associated with the g-valued 1-forms
and 2-forms on M—which may be regarded as elements of the graded Lie
algebra A*(M, g)—which is the subject of this book.

213ee Chapter 3 for the formal definition.
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Basic and Semibasic Forms

The terms basic and semibasic have to do with forms on the total space of
a bundle. They refer to how these forms are related to the fiber and base
directions. Let F — E = M be a fiber bundle over the manifold M. Then
m*: AP(M) C AP(E).

Definition 5.23. Let w € AP(E).
(i) w is basic if it lies in the image of 7.

(ii) w is semibasic if w(vy, ... ,un) = 0 whenever v; is tangent to a fiber.
&

Lemma 5.24.
(i) Basic forms are semibasic.

(ii) w is semibasic < eachp € E has a neighborhood U on which there are
basic forms w; such that w = > a;w; for some functions a;:U — R.

Proof. (i) If w is basic, then w = n*n for some form n on M. If vy is
tangent to a fiber, then m.vy = 0, so w1y, Vn) = *n(v1y...,Un) =
N(mav1, ..., TVn) = 0.

(ii) «=: Since the forms w; are basic, they are also semibasic and their
combination w = 3 a;w; is also semibasic.

=: Fix p € E. Choose a local trivialization v of E over a coordinate
neighborhood (V; ) around m(p) € M so that Y~ Y(V) = V x F. Write
p = (pum, pr) in this local trivialization. Then choose a coordinate neighbor-
hood (W, y) around pr € F. Then (z o1, yorp) is a local coordinate system
on a neighborhood ¥~*(V x W) of p. Abbreviate (x o,y o) by (z,9).
Write the semibasic p-form w as w = Y arsdzr A dyy. Let by and ey be the
bases dual to dz; and dys. Since w is semibasic, axr = w(bg ANer) =0 if
L # (. Thus, w = Y arpdx;. |

Lemma 5.25. Let H — P — M be a principal H bundle with right action
Rp: P — P, h € H. Let n be a p-form on P. Then

w is basic < w is semibasic and right H invariant.

Proof. =: By Lemma 5.24(i), we need only show that w is basic = w right
H invariant. But w is basic = w = 7*n for some form 7 on M= Rjw =
rmtn = (TRp)'n=71"n=w (cf. Definition 3.19).
«: By Lemma 5.24(ii), we may write, locally, w = 3" a;w; for some
basic forms w; and functions a;: U — R. We may assume that the w; are
independent at each point. Now the H invariance implies that
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Zaiwi = R}, (Z aiwz-) = Z Ria;Rjw; = Z(Riai)wi = Rja; = a;.

Thus, a;(p) = a;(ph), so the coefficients a; are constant along the fibers
and so are basic functions. Thus, w itself is basic. ]

Some Lie Groups

Here is a description of some of the most common Lie groups. These ex-
amples are linear groups, which means that each occurs as a subgroup
of Gl,(R) which we studied in Exercise 1.19. We also list their tangent
spaces at the identity expressed as subspaces of the vector space M, (R).
This means that these tangent spaces have been translated so as to pass
through the origin. They are named by the corresponding Gothic letters.

The Positive General Linear Group (the identity component of GI,(R)
GIT(R) = {A € Gl,(R) | det A > 0},
gl (R) = Mn(R).

The Projective General Linear Group
PGI,(R) = GlL,(R)/{\ € Gl,(R) | A e R},
pal,(R) = {A € M,(R) | Trace A = 0}.
The Special Linear Group
Sl,(R) ={A € Gl,(R) | det A =1},
sl,(R) = {A € M,(R) | Trace A = 0}.
The Projective Special Linear Group
PSI,(R) = Sl,(R)/{M € SI,(R) | X € R},
psl,(R) = {A € M,(R) | Trace A = 0}.

The Orthogonal Group
On(R) ={A € Gl,(R) | AA* = 1},
on(R) ={A € M,(R) | A+ A* = 0}.
The Orthogonal Group of signature p,q

Opq(R) = {A € Glp1q(R) | A%y Al =T},
0p,q(R) = {A € Mpiq(R) | AZpq + Ep,th = 0} ,
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I 0
where X, ; = ( 6’ I )
q

The Special Orthogonal Group
S0,(R) ={A€Gl,(R) | AAt =1,det A = 1},
s0,(R) = {A € My(R) | A+ A" = 0} = 0n(R).

The Special Orthogonal Group of signature p,q

SOp.q(R) = {A € Glysq(R) | ATp A" = Tp g, det A =1},
s0p,q(R) = {A € Mpe(R) | AZp 4 + Yy Al =0},

I, 0
where ¥p 4 = ( 6’ I )
q

The Lorentz Group
L, R)={A€ Gl,41(R) | A'SA =X},
Li(R)={A€ M,1(R) | A'S + XA =0},

0 0 -1
where ¥ = 0 I,-.1 0 |.
-1 0 0

The Unitary Group

Un(C) = {A € Glo(C) | AA* = 1o}, o ax _ At
1n(C) = {A € M,,(C) | A+ A* =0}, W

The Special Unitary Group

SUL(C) = {A € Gl,(C) | AA* = I, det A=1},
a1, (C) = {A € M,(C) | A+ A* =0, Trace A = 0}.

The Euclidean Group

Buca(R) = {(3}
euc, (R) = {(11}

The Positive Affine Group

Affr(R) = {(

g) € Gl.,1(R) | v € R™ A€ SO, (R)}
g) e M,.1(R)|veR", Aewn(R)}
y

€eGlt, (R)|veR" A€ G (R )}

afft (R) = {(11) g) € M, (R)|veR" A€ g[n(R)} .

Exercise 5.26. (i) Verify that each of these Lie groups is in fact a group
and that each has the corresponding tangent space at the identity.
(i) Show that Ly 1(R) = On,1(R). Qa

2

Looking for the Forest in the
Leaves: Foliations

. leaves, leaves overhead and underfoot and in your face and
in your eyes, endless leaves on endless trees.
—Ursula K. Le Guin, 1977

A foliation is, roughly speaking, a decomposition of a manifold M into
p-dimensional submanifolds (the leaves of the foliation) that lie neatly side
by side.! The simplest case (p = 1) consists of the integral curves of a
nonzero vector field, or a line field. This case is studied in §1. The higher-
dimensional analog of a line field is a p-dimensional distribution, that is,
a p-dimensional subspace in each tangent space fitting together smoothly
with each other. These are studied in §2. Here, however, in contrast to
the vector field case, when p > 1 we cannot always find leaves tangent
to the distribution at every point. There are integrability conditions that
must be satisfied in order for this to be possible. These are studied in §3,
and in §4 we show that they are sufficient for the existence of the leaves.
In §5 we reformulate both the notion of distribution and the integrability
conditions in terms of vector-valued differential forms. In §6 we give the
modern definition of foliations, and in §7 we show that the leaves near a
point on a given leaf are distributed in the same fashion no matter which
point on the leaf one chooses. This leads us to introduce leaf holonomy
in §8, which we use to study the space of leaves of a foliation, showing in
particular that if all the leaves are compact and have trivial holonomy, then

1For the formal definition, see §6.
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they are all diffeomorphic and form the fibers of a smooth fiber bundle. We
remark that we do not make use of §7 and §8 in the rest of the book.

Although the theory of foliations may appear at first sight to be a rather
abstract subject, as we shall see it is a natural and useful generalization
of the ideas of elementary calculus. In this chapter we present only a brief
introduction to this subject which has undergone a vigorous development
in the last two decades. For more information, we recommend the excellent
book by Pierre Molino ([P. Molino, 1988]).

§1. Integral Curves

In this section we study a special case of how a submanifold may be ob-
tained by specifying its tangent planes. The original example of this sort
of thing is the fundamental theorem of calculus, which says that given the
slope of a graph in R? over each point of an interval I = (a, b) on the z-axis,
there is a unique graph, or integral curve, passing through each point over
I. Here is a picture of some of these graphs for a given slope function.

On a general smooth manifold M, we may again obtain integral curves by
arbitrarily prescribing smoothly varying tangent lines. But, in fact, in this
section we will deal rather with vector fields on M (which do determine
line fields at points of M where they do not vanish) and these yield param-
eterized integral curves. Parameterization of a leaf really only makes sense
when the leaf has dimension one, so the generalization (in §2) of the work
in this section to foliations consisting of higher-dimensional leaves will of
necessity be only partial (but still very interesting). Given a smooth vector
field X on a smooth manifold M, an integral curve for X through p is a
parametrized curve o ((—,€),0) — (M, p) whose tangent at the point a(t)
is the vector X,(y), that is,

e 0
Xcr(t) = U(t) d=f Oxt (5%) .

In the following figure we picture some of the integral curves of a vector
field in R2. In this picture there is one point P (a critical point) where the
vector field vanishes.
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In this particular case, this point is the end of two integral curves and the
beginning of two others. The parametrized integral curves “slow down” as
they approach such a point and “speed up” as they leave it. Of course,
a particle moving under the influence of such a velocity field will never
pass through a critical point even if it were to reach such a point in finite
time (which cannot happen for a smooth vector field; cf. Exercise 1.18. Its
velocity would be zero there, and so it would sit there forever.

Our first aim in this section is to show that, locally, a smooth vector
field always has an integral curve through any point p where it doesn’t
vanish. In fact, Theorem 1.2 on the linearization of vector fields given below
shows even more: it shows that around any point p € M, where X, # 0,
there is a local coordinate system (U, ) such that the integral curves near
p are given by (p2,...,9,) = constant. This means that locally, up to
diffeomorphism, the integral curves are arranged exactly as the family of
lines parallel to the z; axis in R™. To show this we need the following
local existence theorem from the ordinary differential equations (cf., e.g.,
[L. Loomis and S. Sternberg, 1968], pp. 266-275).

Theorem 1.1. Let f(t,z) = (fi(t,x),. .., falt,x)) be a smooth, R™-valued
function defined on some open set J x U of R x R™, where 0 € J. Consider
the system of equations for an unknown function g = (g1,...,9n): R - U
given by

gn(t) = fult, 91(2), -, gn (1)),
with initial conditions g1(0) = c1, g2(0) = ca,...,9n(0) = cp.

(i) (Existence and uniqueness). For any ¢ = (c1,...,cn) € U, there
is an € > 0 such that this system has a unique smooth solution
g: (—e,e) = U.
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(ii) (Smoothness in initial conditions). For any p € U, there is an open set
V withpeV cU, ane >0, and a smooth map g: (—¢,¢€) X VU
such that g(-,c): (—e,e) — U is the unique smooth solution of the
system with initial condition ¢ foranyceV.

Theorem 1.2 (Linearization of Vector Fields). If X is a vector ﬁe’ld deﬁ@ed
on a smooth n-manifold M, then for eachp € M where Xp # 0 it is possible
to find a local coordinate system (U, ) around p suc”h that U isan open set
of the form [—e,€] x [—€,€] X ... X [—¢,€] (a “cubeQ) in these coordinates,
p is at the center of the cube, and 0. (X) = 0/0z:1.

Proof. Since this is a local result, we may assume that M is an open sgt
U c R*, p = 0, X is never zero on U, and, after a change of basis in
R", Xo = e;. Write X = S fi(z)e;, where f;:U — R for each j. Now ‘let
g:R x R" — R" (defined on some neighborhooc'l .Of (0, c)) l?e the solution
of the system (8g/dt)(t,c) = f(g(t,c)), with imtlal‘condltlon 9(0, c) =c
whose existence is guaranteed by Theorem 1.1. ¢ is going to be the (suitably
restricted) inverse of

h(zi,...,%n) = g(:cl,O,:cg,...,:cn).
In terms of h, the conditions on g become
dh/0z; = f(h) and h(0,2,...,Tn) = (0,22,---,Tn),

namely, h.(e1) = X at every point and h.(ej) = € 2<j< Q).at the
origin. Thus, the Jacobian matrix for h is the identity at the or}g‘ln, and
so h is a local diffeomorphism on some cube centered at the origin. Th:
inverse ¢ of h has the required properties.

Exercise 1.3 (Application to PDE’s). Consider the partial differential
equation

of of of _
al(w)%‘-i" 02(58);9—{2 + -+ an(x) oz b(z),
where z € U, an open set in R™, a(z) = (a1(z),...,an(z)) and b(z) are

smooth functions, and a(z) is never zero on U. Show that about. each
point of U there is a coordinate system y = (¥1,---,Yn) such that in the
y-coordinates the partial differential equation assumes the form

of
— =c(y).
oy )
Deduce the general solution of this equation. Qa

. " .
2These coordinates are sometimes called “fow box” coordinates.
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Complete Vector Fields

If 0;: ((aj,b5),¢;) = (M,p) (j = 1,2) are two integral curves through p,
then after a translation of the parameter for oo (say), we may assume
that ¢; = co. Then by the uniqueness part of the theorem on differential
equations, we see that o1 = 02 on (a1,b1) N (az,b2). Thus, we can define
o on (a1,b1) U (az,b2) to be o; on (aj,b;). Applying Zorn’s lemma, we see
that a maximal integral curve through a point p always exists.

There are four possible cases for a maximal integral curve . Up to a
translation of parameters, it can only have domain of one of four types:

(0,a), (0,00), (—00,0), or (—oo0,00).

Definition 1.4. An integral curve is complete if its domain is of the last
type. A vector field is complete if all of its integral curves are complete. %

Exercise 1.5. Find four never-zero vector fields on the interval (0, 1) whose
integral curves exhibit the four possible types of domains. 2

Proposition 1.6. A vector field with compact support® is complete.

Proof. Suppose that X is a vector field on M with compact support. Let
o(t) be a maximal integral curve of X, with domain (a,b). Let us assume
that b < oo and deduce a contradiction. (Showing that a = —oo is handled
in a similar manner.)

If X vanishes at a point o(to), then clearly o(t) = o(to) for all £ > to,
and so b = co. Thus, we may assume that X, ;) is never zero for t € (a,b).
It follows that o is a curve on the compact support of X, and hence there
is a sequence t; — b such that o(tx) converges to a cluster point, y say, of
the set {o(t) | t € (a,b)}. Now we pass to the product manifold M x R,
and consider the vector field Y = (X,0/0t) on it. We easily check that
7(t) = (o(t),t), t € (a,b), is an integral curve for Y and that the projection
on M of any integral curve for Y is an integral curve for X. Now Y is a

never-zero field, so the linearization of vector fields (Theorem 1.1) applies
to it, yielding

e a neighborhood V of the point § = (y,b),
o flowbox coordinates (z,u) € R" x R for V in which

— V is a cube of side 2¢,

~ ¢ corresponds to the point (0,b) (in flowbox coordinates),

3The support of a vector field on M is the closure of the subset of points of
M where X does not vanish.
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- Y =9/0u,
— the integral curves of Y have the form z x (—¢,¢€) (in flowbox
coordinates).

<1

2¢ — x eR”

Since limg—co 7(tx) = ¥ the integral curve 7 must meet V, and in fact
it must meet the integral curve 0 x (—¢,¢) (given in flowbox coordinates).
It follows that the integral curve 7 (and hence also the integral curve o)
is defined in the interval (a,b + ¢) which shows that b is not maximal, a
contradiction to the finiteness of b. |

Proposition 1.7. Let M be a proper submanifold of N. Let X be a complete
vector field on N such that for every x € M, X, € T,(M). Then XlM 18
also complete.

Proof. Let o:((—¢,¢€),0) — (M,p) be an integral curve on M for X|M
through p. Then it is also an integral curve on N for X through p € N. But
since X is complete on N, o extends to an integral curve o: (R,0) — (N,p)
on N for X through p € N. If o(t) still lies on M for all t € R, then we're
done. Therefore we may suppose that this fails for some ¢ > 0 (reversing the
sign of X if necessary). Set to = sup{t € R | a([0,t]) € M}. If o(to) € M,
then we have a contradiction, since then, by Theorem 1.1(i), for some 6>0
we must have o((to — &, to +€)) C M which conflicts with the maximality
of to. If o(to) ¢ M, then the sequence T = o(to(1 — (1/m))) is a sequence
of points on M which converges on N but not on M. But M is proper so
this is also a contradiction. |

Exercise 1.8. Show by example that the condition that the submanifold
be proper is necessary for the conclusion to hold. Q

Exercise 1.9. Show that the vector fields on R? given by X = y%(8/0x),
Y = 22(8/dy) are complete, but that X + Y is not complete. a

Exercise 1.10. Show that any smooth vector field on a smooth manifold
M is the sum of two complete vector fields. [Hint: you may assume that the
constant function 1 on M may be written as the sum of two nonnegative
smooth functions 1 = py + pz with the property that the support of each
p; (i =1,2) is a disjoint union of compact sets.] Qa
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One-Parameter Groups of Diffeomorphisms

Let us consider a smooth map ¢: R x M — M. For convenience we shall
often abbreviate ¢(t, z) as ¢i(x).

']f)eﬁnition 1.11. ¢ is a one-parameter group of diffeomorphisms (or a flow)
i

(1) wo(z) =z for all z € M,

(2) ws(pi(z)) = pste(z) for all s,t € R, and all z € M. %
We remark that

(i) ws(p—s(z)) = wo(z) = = so that each ¢, is in fact a diffeomorphism.

(ii) T}l;e map R — Diff(M) which sends t — ¢; is a group homomor-
phism.

Lemma 1.12. Suppose that {U,} is an open cover of M and g4 > 0.

(i) A one-parameter group is determined by its restriction to the sets
(_ansa) X Uav

(ii) Suppose that we are given smooth maps ¢qo: (—€q,€a) XUy — M such
that 1.11(1) holds and 1.11(2) holds where it makes sense, and that
these maps agree along the overlaps of the domains. Then if either
the cover {U,} is finite or infe, > 0 these maps are obtained as the
restrictions of a unique one-parameter group of diffeomorphisms.

Proof. (i) Suppose that ¢ and 6 are two one-parameter families with the
same restrictions to each (—eq4,e4) X Uy. We claim that for each z € M
we have ¢;(z) = 6;() for all t. Clearly this is true for t € (—eq,€4), where
x € U,. Moreover the set V; = {t € R | ¢i(z) = 6:(z)} is closed. But if
t € Vz, then we have p.(z) = 0,(x) € Ug for some 5. We then have, for all
ERS ( —E€B,€ g), ,

Pstt(2) = ¢s(pe(2)) = 05(0:(2)) = Os44().

Thus V;, is open. Since 0 € V,, V., is not empty and hence V,, = R.

(ii) Since a finite cover implies ¢ = infe, > 0 we assume the latter
This implies that we have a well-defined smooth map ¢: (—¢,6) x M — M
defined by ¢|(—¢,€) xUq = @o|(—¢,€) X Uy. Then we define p: Rx M — M
by ¢s(z) = ¢7,,(z) (the n-fold composition) for any n > |s/e|.

kglaim Ly i: well defined. If n > |s/e| and k is a positive integer then
Pk (@) = (05 /kn)" (@) = (ps/n)"(z). In particular, if m and n are both
> |s/el, then @7, (z) = 0377, (x) = @), ().
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Claim 2. ¢ is smooth. Since ¢s(z) = go’;/n(x) it suffices to note that

@s/n(x) is smooth.
Claim 3. ¢ is a one-parameter group of diffeomorphisms,

(ps+t(w) = (So(s-}-t)/n)n(w) = ((ps/nﬁot/n)n(x)
= (0s/n)"(P1/n)" (@) (Since we can reorder for small parameters)

= ps(pe(2))-

x U,. By definition ¢ restricts to
ts

Claim 4. o restricts to pq on (—€ar€a)
o On (—€,€) X Uy. But then the argument of (i) above shows ¢ restric

t0 P O (—€as€a) X Ua-

The Generator of a One-Parameter Group of Diffeomorphisms
Let us fix z € M and put o(t) = ¢¢(x) so that o: (R, 0) — (M,z) is a
curve on M. Now the tangent vector to this curve at z is o« (Do), where
Dy =Z|,_, Weset Xg = o.(Do)-

Then X is a smooth vector field on M, called the infinitesimal generator
of ¢. It tells how each point begins to move under the action of the motion

¢ for “infinitesimal” t.

Exercise 1.13. Verify that the infinitesimal generator is a smooth vector
field. [Hint: Show that X (f) = (3/6t)f(cp(t,a:))|t=0.] a

By Lemma 1.12 we see that for any € > 0, knowledge of ¢, for |t| < €
suffices to determine ¢; for all ¢ € R. This may make it plausible that
a knowledge of ¢; for t infinitesimal (i.e., knowledge of the infinitesimal
generator) is enough to determine the flow ;. We develop this theme in
the following proposition and its corollary.

Proposition 1.14. Let ¢; be a flow with the vector field X as its infinites-
imal generator. The curves o(t) = ¢i(z) are integral curves for the vector

field X.

Proof. We must show that X, = 0«(D;) for all s. Fix t and set o(s) =
o(s,z) and o1(s) = @(s,9(t, 7)), which is ¢(s + t,z) by property (2) of
Definition 1.11. Hence o1(s) = o(s +t). Thus,
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Oo
Xow = 5

oo

o 0Os

= 0. (Dy). ]

s=t

8

Corollary 1.15. Two one- 1] ;
lary 1.15. parameter families of diffeom 3 ;
same infinitesimal generator are equal. F dilfcomorphism with the

Proof. The vector field determine: i
s the integral curves, which i
the one-parameter families of diffeomorphisms. e determmle

Proposition 1.14 and it : .
akes sonse, its corollary imply that the following definition

Definition 1.16. Let ¢ be a flow with i o
. : infinitesimal
say that ¢ is the flow generated by X. generator X. Then v:;

There is a partial converse to Proposition 1.14:

PI‘OpOSltlon 1.1: . Let }( be a ’UCCtOT ﬁeld on tll,e ”la?”/’()ld 1\4 . A me
.
f SSU

(a) M is compact; or
(b) X has compact support; or
(c) X is complete.

Then there is a unique one- . .
generator. 7 parameter group of diffeomorphisms with X as

(l;;zlcl):. If SS}ICh a one-parameter group exists then it is unique by the last
o ry. Since (a) = (b) = (c), it is enough to prove existence assuming
Smc? X is complete, we have an integral curve o R,0 — M, z through
:ng .;:Jomt z € M. We define got'(:v) = 0(t). This defines ¢ (z) for’all zandt
it remains to show that ¢; is a one-parameter group of diffeomorphism: ’
(())nn(ig ag?wm, we use the trick of passing to the vector field Y = (8763 XS )
o R ? Y, a}rlld note that T(t) = F(t,:s,w) = (s +t,4(z)) is an integral
or ¥ through the point (s,z). Since Y is a never-zero field, we can

linearize it on a neighborhood U .
following figure x V of any point of R x M as in the

@, -\ 20

—
—

—

)
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and then the integral curves are given locally in this coordinate system by
translations

F(t,zo,...,zm)=(z0+t,z1,...,zm)

(where, of course, each z; is a function of (s,z)). From this local description
it is clear that

(i) F is smooth, and
(i) F(u, F(t,s,x)) = F(t +u,s,z) for s and ¢ small.
Thus ;(x) is smooth in (z,t). Moreover,

(u+s+1,0u(pe(2)) = F(
= F(u, F(t,s,))
F(u+t,s,x)

= (u+ 5+t puse(z)) (forsandt small),

and so ¢ satisfies property (ii) for s and ¢ small, and hence for all s and ¢.
Property (i) is automatic. | |

Exercise 1.18. Let X be a smooth vector field on R with Xo = 0. Show
that no integral curve can reach 0 in finite time. (Note that if X is com-
plete, this follows from Proposition 1.17, since the one-parameter family
of diffeomorphisms ¢; generated by X clearly satisfies ;(0) = 0 for all ¢.
Also, since ¢; is a diffeomorphism, we can therefore never have p(y) =0
for y # 0.) Show that the same is true for a smooth vector field on a smooth
manifold. a

§2. Distributions

Now we wish to generalize part of the study of integral curves to include
leaves of larger dimension. We shall formalize the idea of “prescribing the
tangent planes” in the notion of a distribution.

Definition 2.1. An r-dimensional distribution on M is a collection D =
{D,} of r-dimensional subspaces Dp C T, M, one for each p € M, that are
smooth in the sense that they may be described on any sufficiently small
open set U C M as the span of r smooth vector fields {X1, X2,...,Xr}-
These vector fields themselves are called a local basis for D on U. A dis-
tribution is said to be involutive (or in involution, or integrable) if for any
point p € M there is a chart (U, ) around p such that the vector fields
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-1 i) -1 6
SO* (8$1 7"'>(p* (63:1»)

form a basis of D on U. ®

Deﬁnition 2.2. A connected r-dimensional submanifold N of M is called
an integral submanifold for the r-dimensional distribution D if D, = T,,(N)
for each p e N.4

In the case of an involutive distribution, it is clear that the equations

g07’+1(p) = Cr41,-- -:‘Pn(p) =Cn

describe an (n—r)-parameter family of r-dimensional integral submanifolds
for D (one for each choice of ¢ = (¢y41,...,¢n)) and that any point in U
has such an integral submanifold passing through it.

§3. Integrability Conditions

In contrast to the case of a single vector field, not every distribution has
an integral submanifold through every point.

Example 3.1. Consider the two-dimensional distribution on R2 consisting

of planes normal to the vector field n(z,y,2) = (y,—z,1) as in the figure
below.

/__\

* y

We can see directly from this figure that there are no integral surfaces
through 0 for this distribution. For if there were such a surface through the

4More generally, if s < r, an s-dimensional connected submanifold N of M is
called an integral submanifold for D if Tp N C D, for each p € N. However, we
won'’t use this generalization in this book. ,
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origin, it would be tangent to the (z,y)-plane there, but a small loop on the
surface about the z-axis could never actually close up since its z-coordinate
would always be increasing as we pass counterclockwise around it. 2

Suppose N is an integral submanifold for a distribution on M. Suppose
that a local basis for the distribution is given on a neighborhood of p € N
is by X1,...,Xn. Let i: N — M be the inclusion map. Since X;|n is @ re-
lated to X, for each j = 1,...,n, we have i.[Xi|n, XjIn] = (X, XN
It follows that [X;, X;] is also tangent to N at p, that is, it lies in
span{X1, X2,...,Xn} at p.

Definition 3.2. The system of vector fields {X1,X2,-- LX,JonUCM
is called (algebraically)® involutive (or integrable) if the bracket [X;, X;] lies
in span{X1, X2, ..., Xy} for each i and j. ®

As we have just seen, algebraic involutivity is a necessary condition that
a system of n < m vector fields {Xl,Xz,...,Xn} on an m-manifold M
have an integral submanifold through each point p. The existence of an
integral manifold through each point is in turn a necessary condition for
the distribution to be involutive. In the case of Example 3.1, a local basis
for the distribution is given by

0 0 0 0

_9 9 x, = 41—
X1 oz oz 8y+m6z’

so that 9
(X1, Xo] = 2& ¢ span{ X1, Xa}.
It follows that the distribution has no integral manifolds.

Exercise 3.3. Show that if {X1, Xs,..., X} and {Y1,Ya,...,Y;} are two
local bases on an open set U C M for the distribution D, then one is
algebraically involutive if and only if the other is. a

The exercise implies that the algebraic involutivity is a property of the
distribution itself. Hence we see that a necessary condition that a distribu-
tion D be involutive is that it be algebraically involutive.

§4. The Frobenius Theorem

The content of the following theorem is that the condition of algebraic
involutivity, which is necessary for the involutivity of the distribution, is

5This word is bracketed because we shall omit it as unnecessary once the
Frobenius theorem (Theorem 4.1), is proved.
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also a ?,ufﬁcient condition. This fact allows us to dispense henceforth with
the adjective algebraic in the phrase algebraically involutive.

Theorem 4.1 (ﬂobenius). Let M be an m-dimensional manifold and let
D be an r-dimensional distribution on M. Then

D algebraically involutive < D involutive.

Proof. (We follow [S.S. Chern and J. Wolfson, 1981]. For another interest-
ing proof, cf. [W. Boothby, 1986], p. 161.)

<« This direction was shown above.

= For r = 1 the theorem is implied by the linearization of vector fields
We proce?ed by induction on r > 2. The method is to use the inductior;
hypothesis and the linearization of vector fields to successively improve a
local basis of D. The theorem is local, so we may assume M = U = an
open subset of R™, p = 0 € U, and D is given on U by a local basis
{X1,X2,..., X, }. At each step the vector fields and the open set U will
change, but we will keep the same notation for them. Our goal is to produce

a coordinate system x = (z; Zm) and a local basis f
yeees T or D on U of th
form {X, = 0/0X,, X, = 0/0z,,..., X, = 8/0z,}. O

Step 1. There is a local coordinate s
. yStemx: T1ye..yTom d
basis for D on U of the form {X1, Xz, ..., X;—1, )((rlz 0/0x ;an  local

This is just the linearization of the vector field X..

Step 2. There is a local coordinate s =
: ystem = = (z1,...,Zm,) and a local
basis for D on U of the form {X;, Xs,...,X,_1, X, = 8/5’:;1} such that

i)fli'XLH"Xr_l} is in algebraic involution and X;(z,) =0for 1 <j <

Set
XJ’~ =X; - Xj(z;)X, forl<j<r-—1,
X! =X,.
Note that
Xj(x,) =0 for1<j<r-1,
X/ (z,) = 1.
Writing®

! !/
(X}, X}] = aij(x) X, mod{X], X3,..., X, 1} for 1 <4, j<r—1,

6 .
An equati f th =
the span of Ci ..., Cu. form A = B mod{Cy, ..., Cs} means that A — B lies in
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we see that a;j(z) =0for 1 <4, <7 — 1 by evaluating both sides on ;.
Thus {X}, X%,...,X;_1}isin algebraic involution.

Step 8. There is a local coordinate system z = (21, - , L) am} a loczil
basis for D on U of the form {X; = 0/0z1, X2 = 8/8w2.,..., 1 2
0/0xr—1, Xr = S ica<m Ca0/0z A}, where the final coefficients Ca, 7 <
A < m are functions of Tr,Tr41,---,Tm alone.

By the induction hypothesis applied to the results of step 2, we can find
a coordinate system y = (y1,- - - ,Ym) such that

span{Xl,Xz,...,Xr_l} = span{a/ayl,a/ayz,‘..,6/8yr_1}.

It follows that {8/dy1,0/0y2,--,0/ Oyr_1,0/0x,} is giocal ‘tiasis for the
distribution and, moreover, that 0z, JOy; =0for1<jsr—1

Writing
[0/8y;.0/0,) = by(2)/0z, od{8/dyn, --,0/Fyr—1} for1<j<r—1

we see that bj(z) =0for1 <j=<T-— 1 by evaluating both sides on Z.

Thus we may write

[—6— i]: > cjkai for1<j<r-—1
Oy; 0Trl | ch<ra Yk
Now, expressing the 9/0z, in terms of the ys, we may write

0 9
oz, Z CAayA.

1<A<m

Putting this in the previous formula yields

0
> 0a 0 _ T it

- for1<j<r-1L
. Y
1<A<m dy; Oya "

1<k<r—1

Comparing the two sides, we see that 8Ca/0z; = 0 for r < A < m and

1< j <r— 1 It follows that &, ..., &m are functions of z,,...,ZTm alone.

Step 4. There is a local coordinate system z = (1, .- y Tm) anan locail
basis for D on U of the form {X; = 90/0x1, X, = 0/0za,..., fﬁr—'lnt_s
0/0zr—1, Xr = ET<A<mCA(mT,...,zm)(a/azA)}, where the coefficie
Ca, 7 < A< m, are Functions of Ty, Tri1,---»Tm alone.

Set
X;:XJ fOI'lSjST—:l,
X=X, — Y, CaXa

1<A<r—1
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Then {X{,..., X/} is still a local basis for D and X’ has the form

0
X = Z Ca(Try .oy Tm) -
r<A<m BCL‘A
Step 5. There is a local coordinate system = = (zy,...,Z,,) and a local

basis for D on U of the form {X; = 0/0z,, Xo = 0/0x2,...,X, = 0/0z,}.

The vector field X, is a vector field on R™~", and by the linearization

of vector fields we can find a change of the variables z.., ..., z,, that makes
X, a coordinate field without affecting the other variables. This completes
the proof. [

The proof of the Frobenius theorem not only tells us that the leaves
through any point exist, but also tells us something about their mutual
disposition. It says that, locally, an integrable r-dimensional distribution on
an m-dimensional manifold looks like the affine r-planes in R” x R™~" with
“second coordinate” constant. More formally, we have the next corollary.

Corollary 4.2. Let M be an m-dimensional manifold and let D be an in-
volutive T-dimensional distribution on M. Then for each point p € M there

is a local coordinate system (U,x) about p such that the integral manifold
through q meets U in a set containing

V() ={d €U |z;(d) =zj(q) form—r<j<m}

Moreover, if (U,z) and (V,y) are two such coordinate systems, then the
coordinate changes ® = zy~! have the form

(®1(z1,. -, Zm)s ey P (T, - -+, T,

q)m—r+1(wm—r+1; N ,Im), e ,@m(xm_r+1, e ,itm))

Proof. This is a simple consequence of step 5 in the proof of the theorem.
|

§5. The Frobenius Theorem in Terms of
Differential Forms

For us, the most useful formulation of the Frobenius theorem is in terms of
differential forms. This is the context in which a distribution is given, not
in local terms as the span of smooth vector fields, but in global terms as
the kernel of a V-valued 1-form.
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Proposition 5.1. Let w be a smooth 1-form on M™ with values in the
vector space V. Assume that n = dim ker wy 1s constant forx € M. Then
ker wy is a distribution.

Proof. We must show that, locally, ker w, is spanned by n linearly inde-
pendent, smooth vector fields. Choose a basis {e1,...,eq} for V, and write
w = Y w;e;, where the w; are smooth 1-forms. Fix a point p € M around
which we want to find a local basis of ker w,. Write w; = ) a;j(z)dz; in a
local coordinate system on U about p so that w = 3" aij(x)dxje;, and set
A(z) = (aij(z)), a ¢ X m matrix. Now

wv)=0& Zaij(:c)vj =0 forall
(where v; = dz;(v)), so
dim ker wy = n < rank(a;j(z)) =m —n.

Thus we may assume, possibly after changing the basis of V' and reordering
the z; that the first (m—n) x (m—n) block of A(p) = (as;j(p)) is invertible.
Thus, the same is true on some neighborhood of p, which we again call
U, and because of the rank condition the last (¢ — (m — n)) rows are
linearly dependent on the first (m — n) rows. Thus, on U we clearly have
ker w = Nker w;, with the intersection taken over the range 1 < j <m-—n.

Now set
 fw, 1<i<m-—n,
T = dzr;, m—n<i<m.

The n;, 1 < i < m, form a basis for the 1-forms on U. We write n; =
S bij(z)dz;, 1 < i < m. The vector fields X; = > cjk(z)(0/0zk) dual to
the 7; are smooth since the coefficients are given by (bij(z)) (cir(z)) =1,
and (b;;(z)) is invertible. Moreover, the smooth vector fields X, for m,n <
j < m, form a local basis for the distribution ker wy. [ |

Exercise 5.2. Let M be a smooth manifold and w:T(M) — V a (smooth)
trivialization of the tangent bundle. Show that for all v € V, wl(v) is
a smooth vector field on M. If p € M, let c(t,p,v) (defined for all ¢
on some neighborhood of zero) denote the integral curve of w™l(v) with
¢(0,p,v) = p. Show that c(at,p,v) = c(t,p,av). Show that the map
exp,,: T(M) — M x M, which sends (z,w) — (z,c(1,z,w(w))), is defined
on some neighborhood of the zero section and is a diffeomorphism of some
neighborhood U of the zero section onto a neighborhood of the diagonal in
M x M. a

Now we are in a position to ask what form the integrability conditions
for a distribution assume when the distribution is given as the kernel of a
V-valued 1-form w. We have the next result which is the differential form
version of Frobenius’ theorem.
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Proposition 5.3. Let w be a smooth 1-form on M with values in the
vector space V. Assume that n = dim ker w, is constant for x € M, and
let D = {ker w, | x € M} be the distribution determined by w. Then

D is integrable < dw(X,Y) = 0 whenever w(X) = w(Y) = 0.
Proof. Let us choose a local basis X3,..., X, for D in a neighborhood U
of a point of M.

Then D integrable on U & [X;, X;] € span{X;,...,X,} for1<jk<r
S w([X;,Xk]) =0 for1 < j,k<r

But since w(X;) = 0,1 < j <7, we have (cf. Lemma 1.5.15) for 1 < j,k < r
dw (X, Xx) = Xj(w(Xk)) — Xi(w(X;)) - w(( Xy, Xi]) = —w([X;, Xa]),
and so
D integrable on U & dw(X;, Xx) =0 for 1< j,k <,

which implies the result. | |

Corollary 5.4. Let w be a smooth 1-form on M with values in the vector
space V. Let W C 'V be a subspace, and assume that n = dim w;1(W) is
constant for x € M. Then D = {w; (W) | x € M} is a distribution and

D integrable & dw(X,Y) € W whenever w(X) and w(Y) lie in W.

Pr(_)of. The distribution 92 is the kernel of the smooth 1-form w mod W
taking values in V/W. The equivalence of the integrability for condition
for w mod W and the one given above for D is clear. |

.Exex;cise 5.5. Let w = (w1, ...,wy) be a smooth 1-form on M with values
in R”. Assume that n = dim ker w, is constant for z € M, and let D =
{ker w; | z € M} be the distribution determined by w. Show that

D integrable & dw; € I(wy,...,w,),

where I(wy,...,w,) is the ideal in A(M) generated by w, ..., w,. 2

§6. Foliations

Tl}e modern. study of integrable distributions is called the theory of foli-
ations. The idea is to abstract the property contained in the corollary to
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the Frobenius theorem. A foliation on a manifold consists of the special co-
ordinate systems guaranteed by this corollary, which clearly determine the
integral manifolds. The integral manifolds themselves are called the leaves

of the foliation.

Definition 6.1. Let M™ be a smooth manifold. A ¢- codimensional foliated
atlas on M is an atlas 4 such that, if (U, @), (V,9) € 4, then the coordinate
changes ® = 1! have the form

& R™7x R - R™ 7 xR,
(l‘,y) s ((I)l(way)vq)2(y))v

namely, the last g-coordinates depend only on the last g variables. *®

Definition 6.2. Two foliated atlases are equivalent if their union is a fo-
liated atlas. A foliation on M is an equivalence class of foliated atlases.

®

Note that every foliated atlas is equivalent to a maximal foliated atlas,
which may be identified with the foliation. As we did for the definition of
a smooth structure, we shall always implicitly assume that our atlases are

maximal.

Given two charts (U, @), (V, %) in a foliated atlas, the coordinate change
® = o~ ! sending (z,y) — (®1(x,y), P2(y)) determines the diffeomor-
phism ®2: R? — R7. We can use this diffeomorphism to replace the coor-
dinate system ¢ on U by 6 = (id x ®2) ¢, also on U. The coordinate change
between the charts (U,0) and (V,v) is then the simpler diffeomorphism
(:17, y) - ((I)l(ma y)’ y)

Let M™ be a smooth manifold with a foliation. If (U, ) is a foliated

chart and
¢ = (p1,02):U = R™71 xR,

then for x € U, set
Dy = @ra (0 X Ty () (RY)):

Exercise 6.3. Show that D, is independent of the choice of foliated chart

used to define it and determines an integrable distribution of codimension
q. Qa

Definition 6.4. The integrable distribution guaranteed by Exercise 6.3 is
called the distribution associated to the foliation. *®

Definition 6.5. The leaf £ through a point p of a foliation on M is defined
to be the set of points on M which can be joined to p by a piecewise smooth
path everywhere tangent to the distribution associated to the foliation. %
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Propoi,}iltio? 6.6.fE’ve7‘y leaf L of a foliation of codimension g on M™ is
a smooth submanifold of dimension m — q and is an inte )

‘ ral sub

for the associated distribution D. aral submantfold

Proof. Let ic € L and (U,p) be a chart of a foliated atlas with z € U
Now_ai € ¢ (R™ % x y) for some y € RY. Let W be the path component.
of 3 (R™79 x y) containing x. Since W is connected and is an integral
¥nan1fold of the distribution D, we have z € W C £. On the other hand, W
is a‘ﬁat p%aque of £ in the chart (U, ). Thus, £ is covered by flat plac;ues
of dimension m — ¢, and so L satisfies the condition of Definition 1.2.1 for
a subrpanifold. Moreover, since £ is a union of open plaques, each of \;vhich
is an integral submanifold for the distribution D, it follows, that £ is also
an integral submanifold for D. [ ]

Corollgry 6.7. Every leaf of a foliation is a mazimal connected integral
submanifold of the associated distribution D.

Proo‘f..It sufﬁce§ to show that every connected integral manifold of D
contalm.ng z lies in the leaf containing z. Suppose that N C M is such a
submanifold. Lgt‘[, be the leaf through x. Since N is connected, any point
y i N Ir‘lfa}fdbfe joined to x by a smooth path on N. Since N is an integral
submanifold for D, this smooth path is everywhere tangent t

y € L. Thus, N C L. ’ ent to ,and hencle

Deﬁnitign 6.8. A p?“oduct (or trivial) foliation is one on a manifold
M = N?% x L for which the atlas is just the product of the atlases of
the factors. *®

SEtxanledﬁt;Q. If F — F — B is a smooth bundle, then the local product
ructure determines a foliation on E, called the vertical foliati i
the leaves are the fibers. real Joliation, for Whl(il

§7. Leaf Holonomy

Now we show that for a fixed leaf £, the way that the various nearby leaves
arrange themselves about £ near a given point p € £ is in fact independent
of the choice of p € L. Of course, this arrangement does depend very much
on the choice of £ itself. This will lead to the notion of holonomy, which
describes how the leaves near £ “wind around” L. g

Sliding Along Leaves

The basic construction is the following. Fix a leaf £ and two points on it
To,z1 € L. Next choose a continuous path o:(1,0,1) — (£, z¢,z;). Now at
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any point of the path o, say at o(t), we pick a chart (U, ), o= (:c, y) U—
R™ 7 x RY, of the foliation so that the plaque of £ in U containing a(t)
corresponds, under ¢, to R™7 x 0. Wecall Ty = ¢! (0 xRY) a tmns:ve.rsal
at o(t). Each point of T} determines the leaf through 113, alt}.lough distinct
points may lie on the same leaf, as shown in the following diagram.

Now the coordinate changes of the last ¢ coordinates do not depend on
the first m — g coordinates. It follows that on the overlap between 1_;w0
charts at o(a) and o(b), the coordinate change induces a célffe'aomorphlsr}l
Oba:la — T,,.” Moreover, it is clear that @cp@ba = Pe,a- Slgce o(I) is
coinpact, finitely many such coordinate systems suffice Fo cover 1t..By tak-
ing the composite of the corresponding finitely many (ﬁffeon}orphlsms,‘we
can pass from one end of the path to the other to obtan} a dlffeomorphlsm
hy:To — T called the slide map as shown in the following diagram.

Exercise 7.1. Show that the germ of hy:To — T, at o(0) is independent of

the particular coordinate systems used to define it and is even independent
of the choice of o (I,0,1) — (L, Zo,x1) within its homotopy class. a

Thus, we have the following theorem.

"The diffeomorphism may not be defined on all of T, nor have all of Tj, as its
image. Rather, it will be a diffeomorphism between neighborfwods of a.(a) and
o(b) in T, and Ty, respectively. This means that it is not a diffeomorphism but

the germ of a diffeomorphism. ' '
8'At least this is true on the (nonempty) domain where it makes sense.
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Theorem 7.2. Let 0:(1,0,1) — (£,xo,21) be a continuous path on a leaf
of a foliation of M. Let Ty and Ty be two transversals of the foliation at
zo and x1, respectively. Then there exist open subsets Ty and Ty of Tp and
T, which are still transversals of the foliation at xo and x1, respectively,
and a diffeomorphism o: Tj — T} such that

() Lz = Ly(g) for all x € Ty, where L, denotes the leaf through =,
(ii) ¢ depends only on the homotopy class of o:(I,0,1) — (L, zo, 1),

(iii) if o; corresponds to @; for j = 1,2 and 01(1) = 02(0), then the
composite path o1%0 (i.e., first follow o1, then follow 03) corresponds
to the composite mapping @2 © ©1.

Corollary 7.3. Let L be a closed leaf, and let T be a transversal. Then
TN L is a discrete subset of T.

Proof. It suffices to show that K N £ is discrete for every compact set
K in T. Since £ is closed in M, it follows that A = K N L is closed. If
A is not discrete, then there is a point p € K which is an accumulation
point of A. Since A is closed, p € A. Now by the theorem, if ¢ € A,
there is a diffeomorphism between some neighborhood of p in T and some
neighborhood of ¢ in T' mapping points of A to points of A. Thus, ¢ € 4
is also an accumulation point of A. This means that every point of A is
an accumulation point. Thus, A is a perfect set. But every perfect set
is uncountable, so we see that £ contains the uncountable set A, which
is obviously discrete in the leaf topology. But £ is paracompact, so any
discrete set is at most countable,? which is a contradiction. |

Corollary 7.4. Every closed leaf is a regular submanifold of M.

Proof. Let £ be a closed leaf, p € £, and let T be a transversal at p arising
from the chart (U, ¢). Since T'N £ is a discrete subset of T', we can shrink
the size of the chart (U, ) so that the new reduced transversal meets the
leaf in the single point p. This chart shows that £ is a regular submanifold
near p. Since p is arbitrary, £ is a regular submanifold. |

Exercise 7.5. Let A C R" be a closed set with every point an accumulation
point. Show that A is uncountable. [Hint: Since each point p € A is an
accumulation point, for every n > 0 there is a point g # p with |g—p| < 1/n.
Fix p € A and take two distinct such gs for n = 1. Then repeat the argument
for each of the gs in place of p for n = 2. Repeat this process to construct

9 A discrete implies each point p € A has an open neighborhood U with A —p
in U°.
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inductively an uncountable number of convergent sequences with distinct
limits.] a

Definition 7.6. Let us fix a leaf £, a point p € £ and a transversal T' to the
foliation at p. Let G(T, p) be the group of germs diffeomorphisms of (T, p)
at p. Then our construction associates to each loop A: (I,0I) — (L,p) a
germ of a diffeomorphism ¢(A) € G(T, p). In fact, because of properties (ii)
and (iii) of Theorem 7.3, ¢ induces a group homomorphism @,: 71 (£,p) —
G(T, p) called “the leaf (or transverse) holonomy.”

Exercise 7.7. Show that if Tp, T} are two transversals through the end
points zg,z1 € £ of a path o: (1,0, 1) — (£,xo,z1), then the canonical
(germ of a) diffeomorphism f: (To, o) — (Th,z1) induces a commutative
diagram:

Co
(L, ) — (L, xp)
¢%)*J/ g} \Lq’l*
G(Ty, x) = G(T}, x)

a

Of course, the reason for using germs of diffeomorphisms is to have well-
defined maps, since there is no guarantee how the “Poincaré first return
map” ¢()\) will behave with respect to the transversal T' on two counts.
First, a loop may either increase or decrease the size of T' (or even do some-
thing more complicated). Second, different loops may do different things.
However, in the special case that the leaf has finitely generated fundamen-
tal group (in particular, if it is compact),!® there is a kind of bound on
the behavior of the holonomy in the sense that we may choose transversals
T, C T, at p such that for some set of generators {g1,---,9x} of m1(L,p) we
have ¢, (g:)T1 C Tz for 1 <4 < k. If, in this special case, the holonomy is
trivial, it follows easily that (. (g;) is defined on T for all ¢ and, moreover,
is the identity there. It then follows that ¢.(g) is defined and is the identity
on T; for all g € m;(£,p). This suggests the following.

Theorem 7.8. Let M be a foliated manifold and let L be a compact leaf
with trivial holonomy. Then there is a neighborhood U of L in M such that
there exists a leaf-preserving diffeomorphism L x T — U, where T is a
transversal at p € L.

10Here we use the fact that the fundamental group of a compact manifold is
finitely generated. Cf. [J. Dugundji, 1966].
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Proof. Since £ is a compact leaf in M, each point of £ lies in a coordinate
neighborhood of the foliated atlas meeting £ in just one plaque. Using the
compactness of £ again, we may refine this cover to a finite one consisting
of foliated coordinate neighborhoods (R;,®;), 1 < ¢ < n, meeting £ in
the plaques U;, 1 < i < n. Since the holonomy is trivial, we may assume
once and for all that, for each y € RY, the leaf containing the plaque
(p;_l(Rm—q x y) depends only on y, not on ¢. This means we have matched
up all the plaques, as in the following figure.

coordinate system
@, on U;

coordinate system
pon U,

—’/

\~__/)
N~
--d—"

] i
18
1
\
\

The remaining problem is to match up all the transversals. Let us now
@ose smaller open sets W; C U; that still form a cover of £ and satisfy
W,; C U;. To prove the theorem it is enough to construct inductively a
sequence of open sets Vi, of £ and smooth maps fx: Vi xR - M,1 <k <
n, such that S

(1) Ui<ick Wi € Vie C Uit Ui,

(ii) fx is a leaf-preserving diffeomorphism onto its image which gives the
canonical inclusion Vi, C £ upon restriction to Vi x 0, and such that
the leaf containing fi (Vi X y) is independent of k.

Set V1 = Ry N L, and let f; be the composite

Vi x RI %2 0 (1) x R — Ry € M.

Next we describe the inductive step. Thus, we suppose we are given
the open set V; in £ and the smooth map f;:V; x R? — M satisfying
the hypotheses (i) and (ii) above for ¢ = k and we wish to obtain them for
i = k+1. We will do this by altering the definition of fx on (VxNUk+1) xRY
to make it match up with @g41. As we shall see, in order to do this we will
also have to shrink the size of the RY factor in Vi x R? to an open disc,
but we shall continue to denote the reduced factor by R since they are
diffeomorphic.

Set Uk41 = U, Wgyr = W, fr = f, and Vi, = V. Choose K compact
with W C K C U, and restrict the size of R? so that f((VNK)xR?) Cc U
as in the following picture.
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transverse
directions

U ) ,\\ AV X R

To alter f, we require a simple technical lemma.

Sublemma 7.9. Let A C B be smooth manifolds and let f: A x RT —
BxRY be a diffeomorphism onto its image of the form f(z,y) = (®(z,v), y;l
which satisfies ®(z,0) =z for allz € A. Let p: AxR? — R be any sml(?t
function. Set fo(z,y) = (®(x,yp(z,y)),y). Then for'any compact set R((:}
‘A there is a neighborhood T' of 0 in R? such that f,,:llnt(K) xT — B X

is a diffeomorphism onto its image. In particular, if p(z,y) = 0 at some
point, then fo(z,y) = (x,y) at that point.

Proof. Since f and f, agree along the coordinate plane y = O apd f ;s z;n
immersion there, f, is also an immersion. It follows by.contlnulty o the
Jacobian matrix that f, is also an immersion on some 'nelghborhood of t e
coordinate plane y = 0 in A X R?. But any such neighborhood contamls
some product neighborhood K x Ty with K . compact and Tl' a transvlersz:) .
Finally, we claim that since fyisan embedding along K x 0, it mus‘F a S(})l e
an embedding along some neighborhood of the form .K x T, otherw1se't ere
would be sequences of distinct points {p;}, {q]} w1t‘h second coordinates
tending to 0 satisfying fo(p;) = fo(g;) for all j. Passing to a subsequencte,
we may assume the first coordinates converge; then they Ir}ust cor}verge 0
the same point in K. But since f, is a local diffeomorphism, this means

that we must have p; = g; for j sufficiently large, which is a contradictim:

Now we return to the proof of the theorem. Let L be any other compact
set satisfying W C L C int K.
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We may choose p: V x R? — R with values in [0, 1] to be 1 on (V — K) x R?
and 0 on L x R9. Then we replace f by f, as in the lemma and restrict
the size of RY again, and we have the following picture.

i
L ")
v T V>R

That is, for (z,y) € L x R, we have gi41f,(z,y) = (z,y). Thus, we can
extend f, over (W UV) x R? with the required properties. |

For the case of a compact leaf with trivial holonomy, we see the local
triviality of the foliation near this leaf. If the leaf is noncompact, such
an argument is unavailable. Nevertheless, if U is any relatively compact
submanifold of a closed leaf £ such that the holonomy of L vanishes on the
image of 71 (U) in (L), the foliation is once again trivial near this part
of the leaf.

Here is an application of this result which amplifies an aspect of the
fundamental theorem of calculus discussed in Proposition 1.4.19.

Theorem 7.10. Let M and N be smooth manifolds with M connected, and

let t: T(N) — V be a trivialization of the tangent bundle of N. Suppose that
fn, f: M — N are smooth maps satisfying

(G) f*t=frt foralln=1,2,...,

(ii) limp—eo fn(p) = f(p) for somep € M.

Then limy, o0 fo(z) = f(z) for allz € M.

Proof. Let x € M be an arbitrary point. Since M is connected we can
always find a smooth immersion o:(1,0,1) — (M, p,x). Now by replacing
frnand f by f,o and fo, respectively, and p and x by 0 and 1, respectively,
we may assume that M has dimension one. Set n = f*t and note that
the graphs £, and L of f, and f are leaves in the one-dimensional (and
hence integrable) foliation on I x N given by 71,1 — ma.t = 0. Clearly, each
leaf passes from 0 to 1 in the first coordinate and all are homeomorphic
to the interval [0,1] by projection. By the previous result, we can find a
neighborhood U of £ in [0,1] X N and a leaf-preserving diffeomorphism
LxT — U, where T is a transversal at p € £. By (ii), for sufficiently large
n, L, C U; so under the diffeomorphism U — £ x T, L, corresponds to a
leaf of the form £ x u for some u € T. Then the result is clear. ]
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§8. Simple Foliations

In this final section we study the simple foliations, which are indeed one of
the simplest kinds of foliations.

Definition 8.1. A foliation on M is called simple if its leaves are the level
sets of a submersion f: M — N. In particular, this means the level sets of
f are required to be connected. ®

Our aim is to characterize a simple foliation in terms of its holonomy
and its leaf space. The leaf space is obtained as follows. If M is a foliated
manifold, then there is an equivalence relation given on it by declaring

z ~y < z and y lie in the same leaf of M.

Definition 8.2. The quotient space M/~ equipped with the quotient
topology is called the space of leaves. We denote by mM — M/~ the
canonical projection. ®

The characterization of simple foliations is given in the following theorem.

Structure Theorem 8.3.

(A) If a foliation is simple, then each leaf has trivial holonomy, and the
leaf space is Hausdorff.

(B) Suppose a foliation has these properties:

(i) each leaf has trivial holonomy;
(i) the leaf space is Hausdorff;

(iii) each leaf has a finitely generated fundamental group.
Then the foliation is simple.
We begin the proof of this result with a technical lemma.
Lemma 8.4. Let M be a foliated manifold and S C M.

(i) If S is a union of leaves, then so is S.
(ii) If S is a union of leaves, then so is int(S).

(iii) Let U be an open set of M. Then the union V of all leaves meeting
U is open.

(iv) The canonical projection m: M — M /~ is an open mapping.

8§8. Simple Foliations 91

Proof. (i) Suppose the leaf L meets S. We must show that £ C S. Let

L=cnNS§s.
Step 1. It suffices to show that L is open in L.

L = £N S is nonempty and closed in £, so if it is also open then it must
be a component. But L is connected, so it has only one component. Thus
L= L and hence L C S.

Step 2. L is open in L.

Choose p € L = LN S and take a chart (U, ¢) of the foliation. Then, as
we can see from the following diagram,

original sequence

translated sequence R™
\
\
N
P
(etc.) \\ ///
\ o
N AN
N7
if p1,p2,... is a sequence in S approaching p, since S is a union of leaves

we can slide the whole sequence in any direction along the leaves (i.e., add
some small vector to the leaf coordinates R™~7) to get sequences on S
approaching points near p on the leaf L.

(ii) Since M — S is a union of leaves, so is M — S = M — int(S), and
hence so is int(S).

(i'ii) S'ince int(V) is a union of leaves and it contains U, it also contains
V (ie., int(V) D V). But int(V) C V, so int(V) = V.

(iv) Let U be open in M. We must show that 7(U) is open. Now 7(U)

is open & 7~ ln(U) = V is open, and V is the union of all leaves meeting
U, which is open by part (iii). |

Exercise 8.5. Give an example to show that if C is a closed set in M,
then the union U of all leaves meeting C' may not be closed. a

Proof of the structure theorem. (A) Let us first show that a foliation on
M defined by a submersion f: M — N has trivial holonomy. If h,: Ty = T
is the slide map along a curve o tangent to the foliation in M, then we
claim to have the following commutative diagram.
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hs
Lh—h
f\/ /
N

This is obviously true for transversals in a single chart; so it is also true
in general, by the multiplicativity of the slide maps with respect to path
multiplication. But f is injective on small transversals; thus it follows that
for a closed curve, h, = id, and so the holonomy is trivial. Now let us see
that the leaf space is Hausdorff. The submersion f: M — N factors through
the leaf space M /~, giving a continuous bijection M/~ — N. Since N is
Hausdorff, it follows that M/~ is also Hausdorff.

Note that, for a foliation defined by a submersion, the continuous bijec-
tion M/~ — N is actually a homeomorphism since submersions are open.
This fact indicates how to proceed in the proof of (B): it suggests that we
look for a smooth structure on the leaf space M /~ with respect to which
the canonical projection is smooth and a submersion.

(B) Let us assume that M has a foliation with trivial holonomy and
Hausdorff leaf space M /~. The latter condition implies in particular that
each leaf is closed. Pick a leaf £ and let p € L. Take a chart (U,¢) of
the foliation around p. Let T be the transversal at p arising from this
chart. Since m; (L) is finitely generated and the holonomy is trivial, we
may assume that T is so small that it meets each leaf at most once. Thus
7| T:T — M/~ is injective. Now let V be a neighborhood of p in L. Then,
for T and V sufficiently small, the set T' X V (in the product structure
of the chart) is an open set in U. Since 7 is an open map, it follows that
7(T) = m(T x V) is open in the leaf space. In fact, more generally it is clear
that 7 | T:T — M/~ is an open map and hence is a homeomorphism onto
its image. This shows that M /~ is locally Euclidean of dimension equal to
the codimension of the foliation. Moreover, two charts of the type we have
constructed differ by the sliding maps, which are diffeomorphisms (where
defined). Thus the atlas is smooth, and the projection map m: M — M/~
is clearly a submersion: locally, it is just the projection map TxV—-T.1

Corollary 8.6. A foliation whose leaves are all compact and all have trivial
holonomy is simple. Moreover, if the ambient manifold M is connected, then
the projection to the leaf space m: M — M /~ provides M with the structure
of a smooth fiber bundle.

Proof. Since each leaf is compact, it follows that each leaf has a finitely
generated fundamental group. Thus, by the structure theorem, to see that
the foliation is simple, we need only show that the leaf space is Hausdorff.
Let £;, j=1,2, be distinct leaves. Now, according to Theorem 7.8, we can

§8. Simple Foliations 93

find trivially foliated product neighborhoods U; of L;, j = 1,2, together
with foliation-preserving diffeomorphisms f;: £; x R? — Uj, j =,1, 2. Now
the compact sets £;, 7 = 1,2, can be separated by open sets and, again
by the compactness of the L;, we may choose these open sets to be of the
form f;(£L; x T;) C U;. Clearly, these project to disjoint open sets in the
leaf space separating the leaves £; and £,. The proof that the projection to
the leaf space equips M with the structure of a smooth fiber bundle follows
easily from the existence of the trivially foliated product neighborhoods. B

Exercise 8.7. Consider the components of 77 1(y) for all y € R, where
m:R? — (0,0) — R is given by projection on the second factor. Show that
these components are the leaves of a foliation on R? — (0, 0) such that every
leaf is closed and has trivial holonomy. Show also that the leaf space is not
HausdorfL. a

The phenomenon behind this example depends on the lack of “transverse
completeness.” The following result shows what can be done with a strong
transversal completeness condition.

Proposition 8.8 ([C. Ehresmann, 1961]). Let m: M — N be a submersion
of connected manifolds such that, for each point p € N, there are complete
vector fields on M which project to complete vector fields on N whose values
at p span Tp(N). Then m: M — N is a smooth bundle.

Proof. Fix p € N and choose complete vector fields Xi,...,X, on M
that project to complete vector fields Y;,...,Y, on N and such that
Yilp, ..., Yalp form a basis of T,(NV). Let @) and 9/ denote the one-
parameter groups generated by X; and Y}, respectively. Since m maps the
vector field X; to the vector field Yj, clearly it maps the integral curves of
X to those of Y; and we have 7o ¢! =] om. Now the map

(R™,0) = (N,p) given by (t1,...,tn) = %y, 09, 0 oYL (p)

is a diffeomorphism on some neighborhood U of the origin in R™ to some
neighborhood of p in N, and

7Y p) x U — M defined by (q,t1,...,tn) > @, © @5, 0+ 001 (q)

?s :':xlso a diffeomorphism onto its image and covers the previous map. Thus
it is a bundle chart. i
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The Fundamental Theorem of
Calculus

Every time we integrate a function fab f(z)dx we are concerned
with a 1-form f(z)dz on an interval [a,b] with values in the Lie
algebra of real numbers, and the integral is an element of the
Lie group of real numbers. —common room conversation

The main theme of this chapter is the discussion of a nonabelian analog
of the elementary fundamental theorem of calculus. We now sketch the
main ideas followed in studying this theme.

The problem is to characterize the smooth maps f: M — G, where M
is a smooth manifold and G is a Lie group with Lie algebra g (defined
in §2). It turns out that the tangent bundle of G has a canonical trivi-
alization wg:T(G) — g. This trivialization may be regarded as a 1-form
on G with values in g and is called the Maurer-Cartan form. Using this
form, we can reinterpret the derivative f.:T(M) — T(G) as the composite
wefo: T(M) — g, which “forgets” the images f(z) € G and remembers
only the linear part of the map. This composite wg fx = f*wg is a g-valued
1-form on M called the Darbouz derivative (cf. §5). It turns out that the
Darboux derivative determines the map f up to translation by a constant
element of G, the analog of the constant of integration of elementary cal-
culus. The latter part of the chapter analyzes what conditions a g-valued
1-form w on M must possess for it to be the Darboux derivative of some
map M — G. Such a map is an indefinite integral or primitive of w. From
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another point of view, it is a period mapping determined by w.! There are
two conditions for the existence of a primitive, one local and one global.
The local condition is an integrability condition (the structural equation),
which is a special case of the integrability condition for distributions. The
global condition is a monodromy condition, which is automatically satis-
fied for simply connected M. Taken together, this material constitutes the
nonabelian fundamental theorem of calculus (Theorem 7.14) and is indeed
fundamental for our later understanding of Cartan’s geometries.

The second theme of this chapter is the study of the elementary theory
of Lie groups. In particular, we obtain a full picture of the correspondence
between Lie groups and Lie algebras.?

The third theme of this chapter is the characterization of a Lie group
in terms of its Maurer—Cartan form (Theorem 8.7 ). It is this description
that forms the basis for Cartan’s generalization of Klein geometries. In
particular, it will allow us to classify the Cartan space forms in Chapter 5.

§1. The Maurer-Cartan Form

In Euclidean space, parallel translation of vectors allows us to find a canon-
ical trivialization of the tangent bundle. This notion is so fundamental that
some authors define two vectors based at different points of R™ to be the
same if there is a translation carrying one of them to the other. The possi-
bility of doing this depends on the existence of a group—in this case, the
group of translations—acting smoothly and simply transitively on R™.

Left and Right Translation

The circumstances mentioned above apply to any Lie group G, because the
left translation Ly: G — G given by Lg(a) = ga is a diffeomorphism (with
inverse Ly-1) so that the induced maps on the tangent spaces

Ly-1,:Ty(G) = Te(G)

g
are all isomorphisms of vector spaces. This yields a canonical trivialization
of the tangent bundle T'(G). In fact, we could equally well use right trans-
lation Ry: G — G given by Rp(a) = ah. It follows that there are two ways
(which are generally distinct if the group is not abelian) of identifying the
space of tangent vectors at any point g € G with the space of tangent vec-
tors at the identity e. Here is an example showing how these identifications

work for the general linear group.

1Gee Remark 8.12 at the end of the chapter.
2Gee the end of §2 for an outline of this.
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Example 1.1. Regarding GIl,(R) as an open submanifold of the vector
space My, (R), the “geometric” interpretation of T'(Gl,(R)) discussed in §4
of Chapter 1 yields the identification T'(Gl,(R)) = Gl,(R) x M, (R). Thus
the tangent bundle is manifestly trivial in this way, but the tr?viali.zation
uses the parallel translation in the vector space M,(R). We are going to
use this trivialization to calculate the one we are really interested in, which
arises fl‘rom' the group structure on Gl,(R). For g € Gl,,(R), we cz;lculate
the derivative Lg,:Gl,(R) x M,(R) — GIl,(R) x M,(R) as follows. Let
(a,v) € Gln(R) x Mp(R). Then '

1
;{Lg(a +tv) — Lg(a)} = %Lg(tv) = gv.

Thus Lg.(a,v) = (ga, gv). Similarly, Rg.(a,v) = (ag,vg). *

The Map p,:T(G x G) — T(G)

AFcording to Exercise 1.4.16 we can identify the tangent bundle of G x G
with T(G) x T(G) by means of the diffeomorphism 714 X m2.: T(G x G) —
T(G) x T(G). In the following proposition we use this identification to

iaic;:l;)xte the derivative of the multiplication p: G x G — G (cf. Definition

Proposition 1.2. Define 0 by the commutativity of the following diagram.

T X Ty
T(G X G) = T(G) X T(G)

7(G)

Then 0 satisfies 6((g,u) x (h,v)) = (gh, Rh«u + Lg.v).

Proof.'First note that the formula for # makes sense in that since u €
fg(G), it follows that Rp.u € T,4(G), and since v € T, (G), it follows that
gx¥ € Tyn(G). The spaces T(G x G), T(G) xT(G), and T(G) are all vector

bundles, and the three maps are bundle ma
’ s that :
following diagram. P at cover the maps in the
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Thus, it suffices to verify the formula for 8], the restriction of 6 to an
arbitrary fiber, say the fiber over (g,h) € G x G. Since 6| is a linear map,
it must be of the form

8): T,(G) x Th(G) — Ton(G);
() — A(w)+B(v)

where the maps A and B are linear (and may vary with g and h). To
calculate A and B, we shall make use of the two maps

MG—GxG,  ppG—oGxG.
g — (g,h) h — (gah)

Now \p, and pg are connected by multiplication to left and right translations
by the formulas p1oAp = Ry, and pop, = Lg. The chain rule applied to the
first equation yields the following commutative diagram (where cp: G — G
is the constant map with value h).

T(G) (8 u)

lxh* . 1
Ry, idse X Cpe Ry, 1d5: X Cpe
T(G %X G)
RN b

TG «—8—TG)XTG)  (gh R <O (g uyx (10
It follows that A(u) = Rp.u. Similarly, B(v) = Lgav. | |

Maurer—Cartan Form

Let us continue our study of the trivialization of the tangent bundle of a
Lie group determined by left translation. Let g = Te(G).

Definition 1.3. Let G be a Lie group. Then the left-invariant Maurer—
Cartan formwg:T(G) — g is defined by wg (v) = Lg-14(v) for v € T,(G).?
®

3The left-invariant Maurer—Cartan form is the grandfather of all the left-
invariant forms on G. Taking the pth exterior power yields a left-invariant MP(g)-
valued p-form on G, N (wg): \P(T(G)) — AP(g). Any left-invariant R-valued

p-form may be obtained from this one by composition with some linear map
MP(g) — R. In particular, if p=n = dim G, then A"(g) has dimension 1 and

A"(wg) is the Haar measure on G.
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The tferm left'-invarz'ant refers to the fact that wg is invariant under left
translation, which may be seen as follows. Since v € T,(G) implies that
Lix(v) € Thy(G), we have ’

(Lhawg)v = wg(Lps(v)) = L(hg)—l,(Lh* (v)) = Lg—1*(’v) = wg(v).

To see that wg is a smooth form i
' we note that it i
composite of smooth maps 7 may be written as 2

7 xid X1 i
T(G) =5 G x T(G) X8 G x T(G) ZE T(G) x T(G) &  T(G).
(gru) = gx(g,'u,) = g_lx(g’u) = (g_l,O))((g,’u,) = (e:Lg—l u)

Example 1.4. G = R. The Maurer—Cartan form is exactly the form dz

defined in Proposition 1.5.3. *

372;35::)11?}1& :£R+, -). Heree =1 and w(z,v) = Ly-1,(v) = (1/z)v =
. w = (1/x)dz, where dz is as above (but restricted to RY).

L 4
g)]??lpgzrtliﬁlg s i (gzl)e_c{l [l =1}, 50 T(8") = {(€*,ire*?) | .0 €
T(51) is given by, e = {(1,7%) | r € R}. The left action of S on

S x T(S1) — T(SY).

(€*7,(€%,rie??)) > (e'(0+®) rigi0Fe)
Let us cal
culate the Maurer—Cartan form. We have

0 - , .
wa(e,ire?®) = Lo-i0,(e?,ire’®) = (1,ir).

LG =g

This description of the Maurer-Cartan form is eztrinsic since the group

has been regarded as sitting i = R2 P
110, garded as sitting in C = R*. For an intrinsic view, see Example
4

ili‘:x(z(i;n%le 1.7. G = Gl,(R). The Maurer-Cartan form at a point v € T,(G)
. Example 1.1) w(v) = Ly-1.(g,v) = (e,9~ ). Or, identifyingg the
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T.(G) with M,(R), we have w(v) = g tv for v € Tg_(lG). The classxc}a:l
way of writing the Maurer-Cartan form on Gln(R) isg dg. This has the
following meaning. The factor g~ !is an abbrev1§t10n .for Lg-1,. Regard
g € Gl,(R) as “the general point,” that is, g is the identity map on Gl,(R).
Then dg is the identity map on the tangent bundlle. If.v € T,(Gln(R)), then
g tdg(g,v) = g7 (g,v) = (e, g~ 'v); namely, g~'dg is the Maurer-Cartan
form. Let us write this out explicitly in the case n = 2. (’I"he case n = 1
appears above.) Let g = (z;;) so that the x;; are tlhe coordm:fxt'e functloﬁs
on Gly(R). Then dg = (dz;;) and g~ 'dg = (z45) ' (dz;;). Writing out the
matrices, we have

[z ZTi2 ' (den diﬂlz)
w= To1 T22 dzo dza2
Toa/A  —z12/A dz1y d$12) ,
“\—za1/A  z1/A dzo1  dzo2
where A = det g = T11T22 — T12Z21- In its full glory, this is

(z92dz1y — T12d201)/A  (T22dT12 — T12dT22)/A ) '
Y=\ (~zndziy + z11dzn) /A (—TndTiz — z11dT22)/ A

Thus we have represented w explicitly as a 2 x 2 matrix of l-forms defined
on Gla(R) which is constructed from the coordinate functions z;; (and
their exterior derivatives) on Ma(R.) restricted to Gl2(R). Clearly, we can

do the same for any Gin(R).

Behavior of Maurer—Cartan Forms Under Homomorphism

Proposition 1.8. Let ¢:G1 — G2 be a homomorphism of Lie groups.
Then @*ws = @xew1, where the left-hand side is the pullchk f’f the Maurer-
Cartan form on G2 to Gy via ¢, and the right-hand side 1 the Mgurgr—
Cartan form on Gy with values interpreted in go = Te(Gz) via the derivative

of p at e, pue:Te(G1) — T2(G2).
Proof. Let v € Ty(G1). Then
(" w2)v = Wa(Pag (V) = Lyp(g)-1x(#ag (1)) = Pre(Lg=14(v)) = Pug(W1(V))-

All the equalities are obvious except perhaps for the third one. This equal-
ity, which depends on the fact that ¢ is a homomorphism, follows from the
commutativity of the following diagram.

¢
G;— G,

Lg- l ¢ l Lo(g)

G, >G,
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Corollary 1.9. Let H be a Lie subgroup of G. Then wy = wg|H.

Example 1.10. Consider the homomorphism exp:R — S! given by
exp(d) = (8 € R). According to Proposition 1.8, we have exp* wg1 =
exp,o wrt- But we know that wg: = df and that exp, is an isomorphism.
Therefore, identifying the tangent spaces at the identity of R and S! via
exp,o, We may write the equation simply as exp* wg: = df. This may be
further reinterpreted as follows. Instead of regarding 6 as the identity map
on R, let us regard it as the “function” #: S' — R sending e’ — 6. Of
course, this is a “multivalued function” with many smooth branches dif-
fering from each other by constants, integral multiples of 2. But, even
though 6 itself is not a function on S', nevertheless df:T(S') — R is
a well-defined 1-form. With this interpretation of df, the equation reads
exp* wg: = exp*dh, i.e., wg1 = db. *

Example 1.11. SO,(R). Now SO,(R) is a Lie subgroup of GI,(R). By
Corollary 1.9, the Maurer-Cartan form on SO,,(R) is just the restriction of
the Maurer-Cartan form on Gl,(R). Thus, as above, it may be written as
g~ 'dg, and the explicit coordinate expression is the same as above. Similar
statements hold for all Lie subgroups of GI,(R). *

§2. Lie Algebras

Although the axioms for a Lie group G are quite simple, they are very
strong. In this section we show how, by combining these axioms and using
the various maps which they guarantee, we obtain a multiplication on the
tangent space T,(G) which turns it into a (nonassociative) algebra, the Lie
algebra of G. Our practice will be to designate the Lie algebra of G by g,
of H by b, and so forth. The multiplication is constructed by identifying
g with the vector space of left-invariant vector fields on G which can be
“multiplied” by the bracket operation. The Lie algebra g should be regarded
as an infinitesimal version of the group,* as it turns out to encode and
control almost every aspect of the group G (cf. the “primer” at the end of
this section).

Left-Invariant Vector Fields

Definition 2.1. A left-invariant vector field on the Lie group G is a vector
field satisfying either of the properties in the following lemma. ®

Lemma 2.2. Let G be a Lie group and let X be a vector field on G. The
following two properties of X are equivalent:

“Indeed, Lie called it an “infinitesimal group.”
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(i) we(X) is a constant (as a g-valued function on G);

(i) LgxXa = Xga for alla,g € G.

Proof.

wg(X) is constant < Ly-1,(Xy) = Lga)-14(Xga) Va,9 € G
(applying Lgq« to both sides) < Lg.(X,) = XgaVa,g € G. |

Proposition 2.3.

(i) The left-invariant vector fields form a vector subspace of the real vec-
tor space of all vector fields on G.

(ii) The mapping

vector space of
{ left-invariant —_
vector fields on G
X ¢ > X,

is a linear isomorphism.

(iii) If X and Y are left-invariant vector fields, then so is [X,Y].

Proof. Part (i) is an obvious consequence of Lemma 2.2(i). For part (ii),
note that the mapping is clearly linear. Also, if X, = 0, then 0 = Ly, X, =
X, by Lemma 2.2(ii). Moreover, if v € g, we may define Xy = Lg.v, so
that

LgvXg = LauLgiv = Lagsv = Xag.

Thus, X is left invariant with X, = v, and so the map is surjective. Finally,
for part (iii) we note that the left invariance of X may be rephrased by
saying that X is L, related to itself for all ¢ € G, and the same may be
said of Y. By Lemma 1.4.22, the bracket [X,Y] is also Ly related to itself
for all g € G; that is, [X,Y] is left invariant. ]

Definition 2.4. If v € g, the Lie algebra of G, then v' denotes the corre-
sponding left-invariant vector field on G. *®
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Lie Algebras

The vector space g can be given a multiplication. Two vectors u,v € g
determine two left-invariant vector fields u! and v' on G from which we
may form the commutator [uf, v'], which, by Proposition 2.3 (iii), is also
left invariant. Then [u,v] € g is defined to be the value of the commutator
at the origin. The vector space g, equipped with this multiplication, is
called the Lie algebra of G.

Proposition 2.5. The multiplication [, ]: g x g — g satisfies the following
properties.

(i) (Skew symmetry) [u,v] = —[v,u], Vu,v € g.

(i) (Bilinearity) [au + bv, w] = a[u, w] + b[v, w], Yu,v,w € g, and Ya,b €
R.
(iif) (Jacobi identity) [[u,v],w] + [[v, w],u] + [[w,u],v] = 0.

Proof. These are all immediate consequences of the properties of brackets
of vector fields. [

We now give the abstract notion of a Lie algebra which does not a priori
arise as the Lie algebra of a Lie group (although cf. Theorem 7.20).

Definition 2.6. A Lie algebra consists of a finite-dimensional real® vector
space g together with a multiplication [, ]:g x g — g satisfying the three
properties of Proposition 2.5. A homomorphism of Lie algebras is a linear
map : g1 — g2 that preserves the multiplication, namely

[e(u), (v)]g, = @([u, v]g,). &

Definition 2.7. A subalgebra of a Lie algebra g is a vector subspace h C g
satisfying [h,h] C b. An ideal of a Lie algebra g is a subalgebra b C g
satisfying [h, g] C b. *®

Example 2.8. The Lie algebra of Gl,,(R) is denoted by gl,(R). As a
vector space it is just T.(Gl,(R)), which we have identified with M, (R),
the vector space of n x n matrices. To find the multiplication, we note that
if A = (ai;) € M,(R), then the left-invariant vector field corresponding to

5 . L.

) The restriction to vector spaces over the real field is of course unnecessary.
Lie z?.lgebras over the complex numbers or even arbitrary fields are commonly
considered. The case of infinite-dimensional Lie algebras has also attracted much
Interest.
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it is given by Ag = (9,94). As a derivation of functions (writing g = (xij)),
we have 5

= _5_ TijQik -
Ag W5k rk

W4,k
Now let us calculate the commutator of two such vector fields corresponding
to A = (a;;) and B = (bsj) € M, (R). We have

0 0
Z Tijjk g > w”"bqr—_aa;,,r

i3,k P,q,T )
Toi
Oz 0 ij
Pap - E Tpgbar = Qjk .
- TijAjk g " pave oz aillik
;ﬁ 7 axik axp'r ik pr
P pg,r

Now terms in the first sum on the right vanish unless’p =1 &Td- qT—huI;.
erms in the second sum vanish unless p = 1 and.r = g.ne W(;
in the first sum we may replace p by % and g by k. Aiter thls 1si aid ; b
exchange the indices k < 7. In the secqnd .sum we rep agetﬁ yre nr
j. After this is done, we exchange the indices ¢ «» J an en rep

new ¢ by 7. Then the right-hand side becomes

Similarly, t

0
Z Z Tij Z(ajrbrk - bjrark) 537—',;
i,k J T

is i i i field corresponding to the matrix
Clearly, this is the left-invariant vector g e M.(R)

AB — BA. Thus, the multiplication in the Lie algebra o Y
is given by the formula [4, B] = AB — BA.

Proposition 2.9.

he identity of a homomorphism of Lie groups

(i) The derivative at & onding Lie algebras

0:Gy — G2 is a homomorphism of the corresp
Pxer g1 — g2
(ii) If ¢:G1 — G2 and ¥:Go — G3 are homomorphisms of Lie groups,

then
('EZ) o <P)*e = Yxe © Pre-

(i) If id: G — G 1s the identity map, then s0 is idse: g — 8-
(iv) If p is an isomorphism of Lie groups, then @y is an isomorphism of
Lie algebras.

(v) If Gy is connected and @ is an isomorphism of Lie algebras, then

ker ¢ is a discrete central subgroup of G.
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Proof. (i) Let u,v € g1. By Proposition 2.3(ii) we may uniquely extend
these vectors to left-invariant vector fields X,Y on G, (i-e., such that X, =
u, Yo = v). Set v’ = ¢, (u) and v’ = ,(v) in go and extend these to left-
invariant vector fields X’ and Y’ on G,. Since ¢ is a homomorphism, it
follows that woLg = L, 4)op. Differentiating this equation yields ¢, oLg, =
L(g)x © ¥x, so that

Px(Xg) = @u(Lgut) = Lyg)s (ps(u)) = Ly(g)«(u') = X"p(g).

Thus, X and X’ are ¢ related. Similarly, Y and Y’ are o related. It fol-
lows from Lemma 1.4.22 that [X,Y] and [X’,Y’] are also p-related. In
particular, @, ([u, v]) = [p.u, p.v].

(i) This is just the chain rule (Theorem 1.4.7b).

(iii) This is obvious from the definition of the derivative.

(iv) From (ii) and (iii) we see that if the inverse of ¢ is 1, then the inverse
of Pxe is ",/}*e-

(v) From (i) we have 0.y = Ly (g)ue © Pue oL, for all g so that ., is an
isomorphism for all g. It follows that ¢ is a local diffeomorphism at each
point and hence that ¢ ~!(e) is discrete. [ ]

Corollary 2.10. The Lie algebra of a subgroup H of a Lie group G is a
subalgebra of the Lie algebra of G.

Corollary 2.10 makes it possible to describe the structure of the Lie
algebras of any subgroup of GI,(R); for example, any of the subgroups
given at the end of Chapter 1. In each case the bracket operation on the

corresponding Lie algebra of matrices is just the commutator [A,B] =
AB — BA.

One-Dimensional Lie Subgroups

One-dimensional Lie groups have quite special properties and are impor-
tant, as they appear in large quantities as subgroups of general Lie groups.

Proposition 2.11. Let G be a Lie group with Lie algebra g, and let v € g.

Then there is a unique homomorphism of Lie groups ¢p:R — G such that
Pxe(d/dt) = v.

Proof. By Proposition 2.3(ii), there is a left-invariant vector field X corre-
sponding to v (i.e., so that X, = v). Let ¢: ((a,b),0) — (G, ) be a maximal
integral curve for X through zero. For ¢ € (a,b), we consider the function
fe:(a+¢,b+c) — G defined by f.(t) = p(c)p(t — ¢). Now we have
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d d
fox (Zi_t‘to> = Ly(c)x © P= (;ﬁ\to_c) = Lo (Xp()plto—c)) = X1(to)-

From this equation we can draw the following two conclusions.

First, the equation says that fe is an integral curve for X through f(c) =
¢(c), so by uniqueness f (t) = (t) for all ¢ in the common domain. But
then we may patch these integral curves together to get an integral curve
with a larger domain of definition than that of . In particular, by taking
¢ > 0 we see that b can be made bigger, and by taking ¢ < 0 we see that
o can be made smaller. These yield contradictions unless a = —oo and
b = oo. Thus ¢: (R,0) — (G, e).

Second, the equation says that o(s8)p(t) = Lysp((s+t)—s) = fs(s+t) =
©(s + t), so that ¢ is a homomorphism. Since it is also smooth, it is a
homomorphism of Lie groups. |

Corollary 2.12. Every left-invariant vector field on a Lie group is com-
plete. (Of course, the same is also true for right-invariant vector fields.)

Proof. The integral curve through e is a homomorphism ¢:R — G; in
particular, it is defined for all parameter values. Now consider the curve

Lyp:R,0— G, g. We have

d d
(Lg‘p)* (?i_t)t > = Lgx 0 (EL ) = Lg*(Xv’(to)) = XLg‘P(to)
o 0

so that Lg¢p is an integral curve through g defined for all parameter values.
Thus, the left-invariant vector field X is complete. |

Example 2.13. Consider G = R2?/Z?, where Z? is the lattice of integer
points in R2. This is a compact Lie group that is not simply~connected. The
universal cover is &' = R2. The covering projection is 7: G — G, sending
(z,y) — (2™, e2™). Tt is clear that in G a one-dimensional subgroup H
is just a one-dimensional subspace of R?; in particular, they are all closed
subgroups of R2. However, the image 7r(I:I )= H of such a subgroup (which
can be any one-dimensional subgroup of G) is not necessarily closed. In fact,
a necessary and sufficient condition for a subgroup «(H) = H to be closed
is that the line H have rational slope in the standard coordinates of R2. &

Example 2.14. The group G in the preceding example sits as a closed
(diagonal) subgroup in the simply connected group Sl3(C) via the ho-
momorphism (€%%,€e%) — diag(e’®, €'V, e"{=+¥)), so this latter group also
contains one-dimensional subgroups that are not closed.

Exercise 2.15.* Let P be a smooth manifold, H a Lie group, and p: P X
H — P a smooth right action. If X € b (the Lie algebra of H ), we define a
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T
xézzz(;:bf‘iazlgoi e;)::th (:)iyt(X T),}’ = fu(p,e)(0, X). (This is the vector field that
N . e
s ) p € P moves under the action of “the infinitesimal

(a) Show that in the case where P = G is a Lie group with H C G a
subgroup, anc'l w:G x H — G is the group multiplication, that Xt
here agrees with that of Definition 2.4. 7

(b) Let @ be. another smooth manifold and v:Q x H — @ be another
§mooth nght. action. Suppose that ¢: P — @ is H equivariant, that
is, the following diagram commutes. ’

pxaHb P

¢ xid | 4
oxHSQ

Show that the vector fields on P and @ ¢ i
orre; d isi
from the actions of H are ¢ related. ¢ ponding to & € and ans”f

A Primer on the Lie Group-Lie Algebra Correspondence

In this subsection we give a preview of certain facts concerning Lie grou
and algebras whose proofs are consequences of the fundamental theo% pSf
calc1'11us, Whif:h we will supply later in the chapter, and Ado’s 'cheorefrlln °
éleen a Lle g6rou'p G, the universal cover G exists. By Corollary 8 11
N has a unique Lie group structure such that the projection map ié a
omomorphism. Moreover, the kernel of this homomorphism is a discret
c.entral subgroup of the universal cover by Proposition 2.9(v). By Pr A
tﬁon ?.9 bthis homor'norphism induces an isomorphism of .the c.orr}éspo(r)ll()i(i)rsllg-;
Rle j g(i ;:flag‘lgegszlzigét example of this situation is the homomorphism
The c.o'rrespondence that associates to each Lie group its Lie algeb
.(Proposmon 2.5) and to each homomorphism of Lie groups the corres gonfia
ing homomorphism of Lie algebras (Proposition 2.9) is a functor fI‘OII:;I th_
category of Lie groups and homomorphisms to the category of Lie algebra:
;i.;lld homomorphlsms.'lt turns out that this functor is onto in the sense
at every abstract Lie algebra is realized as the Lie algebra of some Li
group (Proposition 7.20), and every homomorphism of Lie algebras is tkiz

de] 1 Va( 1ive ()f some hOIIl()Hl()IphISIIl bet en SO
( ) we (§] I‘ea.llzatlon Of trhe algebIaS

61, : . . .

pOinItt l1sinot: quite unique. There is no uniquely determined identity element. An;

poir ying over the identity element of G may serve as the identity. Oncé thi}s’
ice is made, the rest of the Lie group structure is determined. .
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However, the functor is not injective, as we saw earlier, since a Lie group
always has the same Lie algebra as its universal cover. Nevertheless, for
connected Lie groups this is the only thing that can go wrong. Two con-
nected Lie groups with the same Lie algebra have the same universal cover
(Proposition 7.20). If we restrict the functor to the Lie groups G that are
connected and simply connected, it becomes an equivalence of categories.

For subgroups, it may be shown [H. Yamabe, 1950] that if G is a Lie
group and H is any subgroup, then there is a unique smooth structure on
H such that the inclusion map is a weak embedding, and H is a Lie group

with this smooth structure.

§3. Structural Equation

Let G be a Lie group with Lie algebra g. The structural equation for the
Maurer-Cartan form leads to the first of two necessary conditions that a
g-valued 1-form on a manifold M be the Darboux derivative (cf. §5) of a
map M — G.

Let us calculate the exterior derivative of the Maurer-Cartan form wg
of a Lie group G. The calculation is merely an application of the general
formula

dwe(X,Y) = X(wa(Y)) + Y we(X)) — we (X, Y1),

derived in Chapter 1 (Lemma 1.5.15), which holds for any 1-form and any
pair of vector fields. In our case we take X and Y to be left-invariant fields
so that wg(X) and we(Y') are constant. Then the first two terms on the
right vanish. As for the last term, since X and Y are left invariant, the
bracket [X,Y] is also left invariant, and so we have wg([X,Y]) = [X,Y]e.
But [X,Y]e = [Xe, Y.], where, by definition, the bracket on the right is the
Lie bracket in g. Thus the last term is ~[we(X),we(Y)]. This yields the
following equation, known as the structural equation:

[dog(X, ) + wo(X),w6(V)] = 0]

We have derived this equation for left-invariant fields X and Y. But it is
a linear equation relating 2-forms, and hence it must hold for any pair of
vectors u,v € Ty(G) that are the restrictions of left-invariant vector fields
on G. But this is true for arbitrary vectors and v, since by Proposition
2.3(ii) any vector may be extended by left translation to a left-invariant
vector field of G. Thus, the structural equation holds for arbitrary vector
fields X and Y.
The structural equation may also be written (Lemma 1.5.21) as

1
dwg + 5[(4)@,(4)@] =0.
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eX;IE;l;;) rst;‘:rcitvirt&}l eqlfla;t}ioanay be thought of as merely a formula for the
. ive of the Maurer—Cartan form. But it i
just that. In Theorem 8.7 we show that i i local oo St
\ . at it provides a local characterizati
. . at
(C)i ;? ;ae group. Thus, it determines the structure of the group locally alr(::il
e regarded as a fundamental defining property of the Lie group

If G S abehaIl, tlle Second
1 f,eI'IIl m the StvI (:EUIa € ation vani

Example 3.1. G = GI,(R). Le equation usin,

le . Let us check the structural equati ing

the explicit formula for the Maurer-Cartan form we = (zij) l(tcliw ) iNe
ij ij)-

work in the differential al i
‘ gebraof n x n i
differential forms on M, (R). We may wirilti: riees over the ring of R-valued

(Tij)wa = (dzij).

Ta: lng l}le exl €r10r deIlVathe Of t -
k 1 qua: n matl 1CeS 1 ms ll

(d.’l,‘ij) Nwg + (inj)dw(; =0.
Now replace (dz;;) by (z;;)wg to get
(CL'Z'J')LUG Nwg + ((L‘ij)de =0.
Since (z;;) is invertible, we finally get
dwe + wg Awg = 0.

To compare this with the origi
o ; .
so that riginal structural equation, we write wg = (w;;)

wg \Nwg = (wij) VAN (wij) = (kaik A wkj)-
Now

Yrwik N Wkj (X, Y) = Ek{wik(X)wkj (Y) - wik(Y)wkj (X)}

So”

(Brwir Awis)(X,Y) = (wir (X)) (wk; (Y)) — (Wik (V) (wiz (X))

or

wag N\ wg (X, Y) = wg(X)wG(Y) - wg(Y)wG(X)
= [wG(X)7wG(Y)]'

7
Here (U.)ij(X)) denotes the matrix with components w; (X)
j .
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§4. Adjoint Action

The adjoint action is a bookkeeping device that allows us to compare the
left and right translations. More precisely, it is the derivative of the conju-
gation action of G on itself. Tt will allow us (cf. Proposition 4.10) to pull
back the Maurer—Cartan form via the multiplication and inversion maps [
and ¢. Let us see how it arises.

A Lie group G acts on itself on the left by conjugation

GxG—G.
(9,h) — Ad(g)h=ghg™"

This smooth map induces, for each g € G, the homomorphism of Lie groups

Ad(g):G — G,

h — ghg"

called the inner automorphism induced by g. The map

Ad: G — Aut(G)
g — Ad(g)

is called the (left) adjoint action of G on itself. It is not necessary to concern
ourselves with the question of whether Aut(G) is a manifold (it is!), so we
shall put the map Ad in the background and concentrate on the maps
Ad(g). For each g € G this map is a isomorphism of Lie groups, and so
by Proposition 2.9 its derivative at the identity is an isomorphism of Lie
algebras. It is this “nfinitesimal” version of the adjoint action that interests
us.

Definition 4.1. Let G be a Lie group with Lie algebra g. Define Ad(g) =
Ad(g).e € Gl(g)- The (left) adjoint representation® is the map Ad:G —
Gl(g) sending g — Ad(g). Equivalently, we may speak of the (left) adjoint
action of G on g as the map G x g — g sending (g,v) — Ad(g)v. ®

Proposition 4.2.

(a) Ad(g):g — 9 i an isomorphism of Lie algebras, and the map
Ad:G — Gl(g) is a homomorphism of Lie groups.

(b) If X is a left-invariant vector field on G, then so is Ad(g)«X for all
g€G.

81f G is a Lie group and V is a (ﬁnite-dimensional) real or complex vector
space, then a (finite dimensional) representation of G on V is a homomorphism
of Lie groups p: G — GI(V).

§4. Adjoint Action 111

(¢) Rywe = Ad(¢g~"wg. (Note that Ad(g™!
and these values lie in g.) (977) acts on fhe values of wo

Proof. (a) This is just a special case of Pr iti i
e ralotats oposition 2.9(i).

Lie(Ad(9). X) = Ln. 0 Lys 0 Ry-1.(X)
= Rg-1, 0 Lpy 0 Lgy(X)
= Rg-1.(X)
= Rg-1, 0 Ly, (X) = Ad(g). X.

(c) Let v € Th(G) so that Ry« (v) € Tyn(G). Then

ngc(v) =wg(Rgxv) = Lihgy-1uRguv = (Lg—l*Rg*)(Lh—l*’U)
= Ad(g™ 'we (v). m

Example 4.3. G = GIl,(R). Let us compute the adjoint action in this
case. We have Ad(g) = Ly o Rg-1. Thus Ad(g9)«X = L o‘R X
By Example 1.1, calculating the derivatives Lg, and R,-1 sg}:ows g_lt*h :
Ad(g)«: M, (R) — M, (R) sends v — gvg™!. T s

L 4
Definition 4.4. For g a Lie algebra,
(i) Autrie(g) = {T € Gi(g) | T[u,v] = [Tw,Tv], Yu,v € g},
(i) olLie(s) = {T € gl(g) | T'[u,v] = [T'u,v] + [u, Tv], Yu,v € g}. &

Exercise 4.5. Show that
(a) Autrie(g) is a Lie group.
(b) the Lie algebra of Autrie(g) is glLie(g)-
(c) Ij;et g be the Lie algebra of G. Show the derivative of Ad:G —
utLie(g) at e is the map ad: g — glLic(g) defined by ad(u)v = [u,v].

(Hence G abelian < Ad trivial = o \%,
trivial.) ivia Ad trivial = ad trivial = [, ]
a

Corollary 4.6.

(i) The map Ad: G — Gl(g) takes its values in Autpic(g).
(ii) Ad(Ad(g))(ad) = ado Ad(g).
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Proof. (i) This is just Proposition 4.2(a).
(if) By (i) we have Ad(g)[u,v] = [Ad(g)u, Ad(g)v], or Ad(g)[u, Ad(g™")v]
= [Ad(g)u,v], so that Ad(Ad(g))(ad(u)) = ad(Ad(g)u). ]

Exercise 4.7.* Let G be a Lie group with Lie algebra g and let H C G be
a closed subgroup with Lie algebra §. Show that

(a) if H is normal in G, then b is an ideal of g,

(b) if h is an ideal of g and if H and G are connected, then H is normal
in G,

(c) if H is normal in G, then (Ad(H)—I)g Cb. ]

Exercise 4.8.*

(a) Show that Hom()\2(g/h), ) is an H module under the action

(ho) (v, w) = Ad(R)p(Ad(R 1), Ad(h™Hw), hE H.

(b) Show that if H is connected, then

Homy,(\2(g/h, 8)
‘EWemmwwmmnmwﬂmm=¢MMmm+wmmMM}

is the submodule of H invariant elements in Hom(\?(g/b, g) under
the action given in (a).

(c) For the case of the Euclidean algebra g = eucn(R), h = so,(R), take
the basis e; = Ei, e = Eij — Eji- Write ¢ € Hom()\2?(g/h),h) as p =
S aijrie; A e;- ® ek, where a;jki 18 skew symmetric in each of the first
and last pairs of indices. Show that ¢ € Homy, (A2(g/h),h) & aijij = ¢
for some ¢ and a;jk vanishes when {i,j} # {k,1}. [Hint: Treat the
casesn =2,n=3,andn >3 separately.] (This result will be basic
for our study of constant-curvature Riemannian spaces in Chapter
6.) Show also that Homo, (r) (A2(g/h),h) = Homy (A2(g/h),h). 9

Exercise 4.9.* Show that the adjoint representation Ad: G — Gl(g) pulls
back the Maurer—Cartan form wgi(g) according to Ad*wgi(g) = ad(wg)-
[Note: ad(wg) is the glLic(g)-valued form on G given by ad(wg)v =

ad(wg (v)) for v € T(G). In more detail, this reads (ad(wg)v)w = [wa(v), w]
Q

for v € T(G) and w € g.]
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Product and Quotient Rules

Using the adjoint action of G on g, we obtain the following fundamental

formulas showing how the M
. 1. aurer—Carta. :
multiplication and inversion. n form behaves with respect to

Proposition 4.10. Let u: iplicats
Propostton et u:G x G — G be multiplication and 1: G — G be
(i) u:wG = (w;Ad:i)(ﬂ‘wG) + Tiwg, ie.,
wwe(w) = Ad7" (h)(we(T1aw)) + we (T2.w) for w € Tg,n) (G x G)
(i) t*wg = —Ad wg, i.e.,
t*wg(v) = —Ad(g)wg(v) for v € T,(G).

Proof. Recall from Proposition 1.2 the commutative diagram

T X Tpx
T(GxG) = T(G) X 1(G)

L/

G)

Zrlllj;e 7OT((g;(u) X Eh, v)) = (gh, Rh«u+ Lgyv). Let w € T(G x G) correspond
1+ X T2« to the element (g,u) x (h,v) € T(G) x T(G). We calculate

(H'we)w = we(pew)
= wel((T1x X Tou)w)
= wob((g,u) x (h,))
= wg(gh, Rhst + Lgyv)
= Lign)-14(Bhstu + Lguv)
= Lh—l*Lg—l*Rh*u + Lh——l*Lg—l*Lg*'U
= Lp-1,RpsLg-1,u + Lp-1,v
= Lp-1,Rpewi (u) + wa(v)
= Ad(h™we () + we(v)
= Ad(h™ " we (T1ew) + we(Taew)
=1 (Ad(h™ we)w + 3 (we )w,

O : p ] 3
f course, m; G X G g G deﬂotes rojection to the Zth faCtOI Ad G i

Aut(g) is the ma; i -
p sending g — Ad(g)™', and 73 Ad ™! acts on the values of T*wg.
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. . b
which verifies (i). To see how (ii) is a consequence of (i), consider the

omposite map ‘
o Gl 6exGeGExG -G

g = (09) — (@gH) =1
map, so the pullback of the Maurer—

i ite is the constant :
Now, this composite is t o et 0 by o,

Cartan form vanishes. Thus ((id x t)A)"p
0 = ((id x 1)A)* () (Ad(g)w) + T3w) )
— (my(id x )A)*(Ad(g)w) + (m2(id X 1)A) we)
= Ad(g)w(; + wa-

-1
Corollary 4.11. Let fi, fa: M — G, and set h(z) = fi(z) f2(z)~*. Then

hrwe = Ad(f>(2){ flwe — fwe}-

Proof. Write h(z) as the composite

hxf gxa W gxG & G

A
Mx M i
n —  (fa(),f2(x)) — (f1(@),f2(z)"1) = fi(@) f2(2) "

z (z,x)

Then
h*we = ((id x ) (f x f2)A) Wwe )
= ((id x ¢)(fr X F2)A)* (3 (Ad(f2)we) + T3wG) A
= (m(id x ¢)(f1 % f2)A)*Ad(f2)we + (m2(id x O(f1 x f2)A)'wa
= fAd(f2)we + f3t W
= f1Ad(fo)we — f3Ad(f2)we
= Ad(f2){fi (we) — f3(wa)}-
M — G, and set h(z) = f1 (z) f2(z). Show that
a

Exercise 4.12.* Let fi, fa:
h*we = Ad(f2(z) ) flwe + f2we-

V a vector space, and p: H — GlI(V)

Exercise 4.13. Let H be a Lie group, e e U and I e

a representation. Let U be a manifold, X a
f:U — V smooth functions. Show that
X(p(h™M)f) = p(h™ )X (f) ~ (Ad(h)(h*wr(X)))]- Q

up with Lie algebra g and let H be

Bxerciee 410, O e lued 1-form on the manifold U and

a Lie subgroup of G. Let f be a g-va
k:U — H. Show that
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d{Ad(k™1)0} = Ad(k™1)df — [Ad(k™ )0, k*wp]
(cf. Lemma 1.5.21 for the bracket of two g-valued 1-forms). a
The last two exercises are a good test of your ability to differentiate. Can

you find a common generalization of them? We note that Exercise 4.14 is
fundamental for the elementary properties of Cartan gauges in Chapter 5.

§5. The Darboux Derivative

Although we could have defined the Darboux derivative in §1, it is not until
now that we can show anything of its usefulness.
Let

G be a Lie group,

g be the Lie algebra of G,

wa be the Maurer—Cartan form on G,
M be a smooth manifold,

f:M — G Dbe asmooth map.

Definition 5.1. The (left) Darbouz derivative of f is the g-valued 1-form
wf = f*(wg) on M. ®

The map f itself is called an integral or primitive of w. It may also be
called a period map associated to w. It is obvious from the naturality of d
that wy satisfies the analog of the structural equation, that is,

dwf(Xy Y)+ [wf(X),wf(Y)] =0.

Why is this 1-form wy called a derivative? In general, if f: M — N,
then we have called the induced map f,: T (M) — T(N) “the derivative of
f.” However, this map is not exactly analogous to the usual derivative for
functions on R since it has the original map f built into it. In the special
case when N = G, a Lie group, we may follow f, with the Maurer—Cartan
form wg to obtain the map wg fu = f*wg = ws: T(M) — T(N) — g. The
precise effect of this composition is to “forget” the underlying map f and
keep only the tangential information. Thus, wy is the precise analog of the
usual derivative of functions on R.

The main property of the (left) Darboux derivative wy is that it deter-
mines f up to left translation by a constant element of G.

Theorem 5.2 (Uniqueness of the primitive). Let M be a connected mani-
fold and f1, fo: M — G be smooth maps such that wjs, = wy,. Then there is
an element C € G (the constant of integration) such that fa(z) = C - fi(z)
forallz € M.
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Proof. Consider the map h: M — G given by h(z) = fa(z) fr(z)~t. Ac-
cording to Corollary 4.11, h* (we) = Ad(fL)(fiwe — frwg). Since this lat-
ter expression vanishes by assumption and h*(wg) = wghx, we see that
hy:T(M) — T(G) induces the zero map on each tangent space. It fol-
lows from Proposition 1.4.18 that h is the constant function. Thus, we get
h(z) =C forallz € M, where C is some fixed element of G. In particular,
fa(x) = C - fi(z) for allz € M. |

Corollary 5.3. (a) Let G be a Lie group with Lie algebra g. Then Ad: G —
Gl(g) is the unique map f:G — Gl(g) satisfying the two properties

(i) f(e)=e
(i) f*weie) = ad(we)

(b) Let g: 1,0~ G, e be a path on G. Then Ad(g):I,e — Gl(g), e is the
development, starting at the identity, of ad(g*(wg)) on Gl(g).

Proof. (a) First we note that Ad does indeed satisfy the two properties: the
first is obvious and the second is Exercise 4.9. On the other hand, Theorem
5.2 guarantees the uniqueness of f.

(b) We have (Ad(g))"wai(s) = g*Ad*wai(e) = 9" (ad(we)) = ad(g*u)G:

Exercise 5.4. Show that if G is a connected Lie group and ¢: G — G is
a homomorphism of Lie groups that induces the identity map on the Lie
algebras, then ¢ itself is the identity. a

Exercise 5.5. Show that the map f: G — Gl(g) defined by f(g) = Ad(g™h)
is the unique map satisfying (i) f (e) = e and (ii) f*wai(e) = —ad(wg). 4

§6. The Fundamental Theorem: Local Version

How can we characterize those g-valued 1-forms w on M that are Darboux
derivatives? In the last section we showed that a Darboux derivative sat-
isfies the structural equation. Now we show that this necessary condition
is also sufficient, at least locally. The beautiful proof of this is due to Elie

Cartan.

Theorem 6.1. Let G be a Lie group with Lie algebra g. Let w be a g-
valued 1-form on the smooth manifold M satisfying the structural equation
dw + %[w,w] — 0. Then, for each point p € M, there is a neighborhood U
of p and a smooth map f:U — G such that w | U = wy.

Proof. The meaning of the Darboux derivative of a map f is that if we are
sitting at a point p € M and we want to move in the direction w € T,(M),
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then, even though we don’t know the image point f(p), nevertheless the
vector w,z(w) € g, interpreted as a left-invariant vector ﬁ7eld on G, tells us
how thc? image point f(z) should move no matter where it is situs;.ted
The idea of Cartan’s proof is to construct, locally, the graph of f in
M x G If there is such an f, then a point (p, f(p)) on the graph can move
only in certain directions if it is to remain on the graph. In fact, a tangent
vector to the graph (v, w) must satisfy the condition fi(v) = w., :

G 1
T (v, w)
) w
o @, fip))
Y

This is equ.ivalent to the condition wg(f«(v)) = we(w), which in turn is just
the condition wf(w) = wg(v). That was for the case when f exists Ig we
are.me‘rely_given the form w, then the condition w(w) = wg(v) deteémines
a distribution on M x G. We shall show that this distribution is involutiv
and that any leaf is, locally, the graph of a possible f. °
Now we pass to the formal proof. Let 1g: G X M — G and mpr: Gx M —
M denote the canonical projections. Let = 7},(w) — 7§ (wg) and let
D = ker Q be the distribution defined by the kernel of QG Actually, we
don’t yet know that it is a distribution. By Proposition 2.5 1 it suffi "
show that it has constant rank. o e fo

Fix a point (p,g) € M x G. We are going to show

Tare(gp) | Dig.p): Dg,py = Tp(M)

is an lsoxr.lorphism. In particular, this will verify that ker {2 has constant
rank = dim M. If mp(v,w) = 0 for some (v,w) € Dy = {(v,w) €
Tp(M) x Tg(Gl) | w(v) = wg(w)}, we have the implicatio,ns ™ (v,w) =
O:>v=0:.>0wg(w):0=>w=0-—->(v,w)zo,andsowe*se;that
Tax(g,p) | D is injective. Conversely, if v € T,(M), then (v walw(v)),) €
Dig,p)> and SO Tarx(g,py | D is surjective. e '

are gOll’lg tr Sh .
Qq W we S egr ble ( ) € (o)
(0] (02 t ]lat D 1 llli g a alculatlng the Xterl T

09 = driy () — drp )
= my(dw) — g (dwg)

107y :
This follows since w(v) = wg(w) for (v, w) in the distribution.
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-y (——%[w,w]) o (—%[wc,wco

[rEwe, Tewal-

N

1 *
= —a[ﬂ*Mw,ﬂMw] +
" 11
Now make the replacement 73 (w) = 7 (we) + 2 so that
1. . 1
dQ = —%[W*ng,ﬂ] - 5[9,71'0(4)@] — Q[Q,Q]

Thus, dQ(X,Y) = 0 whenever QX) = Q()l;'l) = 0. Therefore, by Proposi-
i .5.3, the distribution ker Q is integrable. ‘
tnolr?‘lir?a?ly, we are going to construct, for each p € M, a nelghborhoodéf
of p in M and a smooth map f:U — G such tha‘t w‘l U = wy. Let.L. e
a leaf through the point (p,g) € M X G. The derivative of the ?estrltc)tlon
of my to L induces the isomorphism 7az«: Dig,p) - T,(M) studied a ovte,
and so ma | £ is a local diffeomorphism of a nelghbqrhood of (p, g) 0
some neighborhood U of p € M. Let F:U — L be the inverse map. S1ince

nuF = idy, F must have the form F(p) = (p, f(p)), where f:.U - G Now
F*(Q) = QF, = 0, since the image of F is tangent to the distribution on

which Q vanishes. Thus, we have
0=F*(Q)
= F*(ry (W) — F*(n5(we))
= (rmF)*w — (1 F)"we
=w— f*(we):
|
That is, w | U = wy.
Exercise 6.2. Let g be a Lie algebra andhCg a'Lie_ sub@lgebra. Let w be
a g-valued 1-form on M such that w™1(h) is a dlStI‘lbL}thl’l l)lon M (ie.,
dim w7 () is a constant, independent of z). Show that if dw + 5w, W] takf—j
T
values in b, then D is integrable.

Exercise 6.3.* Let G be a Lie group with Lie algebra g and l'et h Cgbe
a Lie subalgebra of g. Show that there is a unique connected Lie subgrou[-l_-)|
H C G with Lie algebra b.
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Passing from the local existence to the global existence of the nonabelia.p
integral requires the entry of a new idea. We assume that the reader 1s

11 he reader should resist the urge to put the sum qf the first two terms in. tl}e
following expression equal to zero. In fact, the expression [wi,ws] is symmetric in
the two 1-forms wy,ws (cf. Exercise 1.5.20).
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familiar with the notion of the fundamental group of a space, in the sense
of algebraic topology. We shall also use the following facts.

(1) For M a smooth manifold, every continuous map A:(I,0,1) —
(M, p, q) is homotopic to a smooth map.

(2) If Ao, A1: (£,0,1) — (M, p,q) are smooth maps that are continuously
homotopic, then they are smoothly homotopic.

Thus, for a smooth manifold M, the fundamental group m; (M, b) can be
regarded as the group of smooth homotopy classes of smooth loops on M.

We are going to show that a g-valued 1-form w on M that satisfies the
structural equation dw + %[w,w] = 0 determines a homomorphism

d,:m(M,b) - G

called the monodromy representation. It will turn out that this represen-
tation is trivial if and only if w is the Darboux derivative of some map
M — G. Thus, the monodromy will be the last obstruction to the global
existence of a primitive for w.

Development

Let w be a g-valued 1-form on M. The dim M = 1 case is quite exceptional
in that, for it, the structural equation is always satisfied, there being no
nonzero 2-forms on a one-dimensional manifold. Thus, the local existence
theorem always applies to this case. Let us assume for definiteness that

M = I = [a,b]. With this special assumption, we have the following global
existence theorem.

Theorem 7.1. Let w be a smooth g-valued 1-form on I = [a,b]. Then there
1S a unique map

f:(l,a) = (G,g)

with Darboux derivative w.

Proof. By Proposition 5.2, if f exists, it is unique. By the local fundamental
theorem, Theorem 6.1, each point lies in an open interval on which w is
the Darboux derivative of a map into G. Since I is compact and these
intervals form an open cover, it follows that I is covered by finitely many
open intervals U;, 1 < i < n, on each of which w is the Darboux derivative
of a map into G. In fact, we may assume that U;NU; = 0 unless |[i —j| <1
and that tg = a € Uy. Choose t; € U; NU;yqp for 1 <i<n.
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Un
U,
U U
U; 3 n-1
e T b o
t0= a tl tz tn—l tn= b

We inductively choose primitives fi:U; — G such ftl;z;lt fi iﬁzmzl \i’sfi:;,ta (t}il)sze
i(ts < i < n — 1. By the uniqueness ol the p , :
;z(tz) fo; })n—UZ- n U;s+1. Thus we may patch these maps toget(hc;r, settm(g1
i+1 = Ji % . ! . . N o = g o
fz(t) = f;(t) for t € U; to obtain a map f:1 — G. Clearly, f <

f*(wg) =w.

s _ q
Definition 7.2. The unique smooth map f: 1 — G satisfying f (a) tg a.I(IIt
f*(wg) = w is called the development of w on G le'ong I starting at g. .
is. of course, merely a suggestive name for a primitive of w.)

Remark 7.3. It suffices that w be merely piecewise smooth on I dfor the‘:E
to be a unique development. It will be continuous everywherg an sxr;;(i)on
where w is smooth. Indeed, if a = o l< t1 <1 e < t,t,h;-:nb v;(se ;}I)lazhoose
i n:=1...,n

£ 7 and w | [ti—1,ti] is smooth for a , we can ¢l
(()ievelopmentls[;i: [';i—l,ti] — @ so that fi(a) = 9, fit1(ti) tfl(tlt)-]f(t);
1 < i < n — 1. Patching together, we set f) = {i(t) for t € [i_lt, ,hen
obzain—a continuous map f:I — G that satisfies f*(wg) = w except W
t=t;,1<i<n-—1

Next we pass to a more general situation.

Definition 7.4. Let I = [a,b], let M be a manifold of arbit'rary flimensionl;
and let w be a smooth g-valued 1-form on M. G;ven ahpu(aicew;se rSnI:ICI)tOtOf
5:(I,a) — (G,g) be the develop
th o: (I,a,b) — (M,p,q), let & I, > ! 1
Eﬁe g-(:/a(lued 1-form o*(w), which means o (wg) = 0*(w). We call & the
development of w along @ starting at g.

Exercise 7.5.* Let I, M, and w be as in Definition 7.4. Show the following:

(a) Let o:(I,a,b) — (M, p,q) have development 5:(I,a,b) — (G,g,h).
Then
(i) k&:(I,a,b) — (G, kg, kh) is also a development of o.

i f o~ l:(I,a,b) —
i) 61 (I,a,b) — (G h,g) is a development o ,
. ((IM p( q)- (%—Iere inversze refers to the reverse path rather than
inverse in the group G.)

: M, p,q) and p: (I,b,¢) — (M, q,7)
b) Set J = b,c],andleta.(I,a,b)—»( , D / .
® have dev[elopments &:(I,a,b) — (G, g,h) and p: (I,a,b) = (G,h, k)
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Then o % p: (I,a,c) — (M,p,r) has development & % p: (I,a,c) —
(G, h, k). Qa

Exercise 7.6. Show that the endpoint (1) of the development of a smooth
path is invariant under smooth reparameterization of the path. a

In general, however, the endpoint (1) of the development depends not
just on g, but on the whole path o joining p to q. Nevertheless, we now show
that when the 1-form w on M satisfies the structural equation dw+1[w,w] =

0, then (1) depends only on the homotopy class of o (and the starting
point g).

Theorem 7.7. Let M be a smooth manifold and let oo,01:(I,a,b) —
(M, p,q) be smooth homotopic paths. If w is a smooth g-valued 1-form on
M that satisfies the structural equation, then its developments, starting at
g, along og and o1 have the same endpoints.

Proof. Let h: (I x I,a x I,b x I) — (M,p,q) be the homotopy joining o
and o7;.

Now h*w is a g-valued 1-form on I x I that satisfies the structural equation.
By Theorem 6.1, each point of I x I lies in a square neighborhood on which
h*w is the Darboux derivative of a map into G. Given a point ¢ € I, the
compact set I x t is covered by finitely many of these open sets, and, by
an argument like the one above for the interval, we obtain an open set of
the form I x U, with U an open interval, on which h*w is the Darboux
derivative of some map into G. A similar analysis allows us to fit these
maps together to get, finally, a map H:I x I — G such that H(a,a) = g
and H*(wg) = h*w. Since h(b,u) = ¢ is constant for u € I, it follows that
h*w = H*(wg) vanishes along the right edge of I x I, and hence H is also
constant along this right edge. In particular, H(b,a) = H(b,b), and so the
developments of w along o and o7 both end at the same point in G. H

Exercise 7.8. Show that Theorem 7.7 remains true for homotopic piece-

wise smooth paths. [Hint: Show that a piecewise smooth path has a repara-
meterization that is a smooth path.] Q
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Monodromy

As before, M is a smooth manifold and w is a g-valued 1-form on M that
satisfies the structural equation. Let I = [0,1], fix a base point b € M,
and let \: (I,8I) — (M,b) be a smooth closed loop.!? According to the
last result, we may develop w along A starting at e, and the endpoint
®(\) = A(1) of this development will be a point of G that, by Theorem
7.7, is independent of the specific loop A chosen within a homotopy class.
In this way the development yields a well-defined map, ®,: m1(M,b) — G.

Definition 7.9. The map ®,:m1 (M, b) — G described above is called the
monodromy representation of w. The image of ®,, denoted by ' C G is

called the group of periods (period group), or the monodromy group. *®

Proposition 7.10. The monodromy representation is a group homomor-
phism.

Proof. The reader can easily construct a proof by referring to the following
picture.

DG Ay = (ir AD(1) = PAYAo(1) = DAY PAD

M

In this diagram the left translation <I>()\1)5\2 is, of course, the development
of o starting at ®(A1). |

Period Group Only Defined Up to Conjugacy

The fact that the fundamental group depends on the choice of base point is
reflected in the fact that the period group is only defined up to conjugacy.

First we recall the effect of change of base point from b to by on the
fundamental group of a path-connected space. If 0: (1,0,1) — (M, bo, b1)
is a path joining the two points, then there is an isomorphism

P

1291 = {0,1}.
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CU:WI(M, bl) - 7'('1(M,b0)

induced by the map on loops sending
A o*xAxo L

Let :(I,0) — (G,e) be the development of a g-valued 1-form w on M

along o starting at e. Then we have th ; ;
sending g — &(1)96(1)_1, e conjugation map C&(1)¢G = C

Theorem 7.11. Let ®;:m(M,b;) — G, j =0,1, denote the monodromy
representa'tzgn's with respect to two base points. Let o: (I,0,1) — (M, bg,b1)
be a path joining by to by. Then the following diagram commutes. o

@
CaT TC'B‘U)

[

F)’\Togf. L(;\tl Al; (I,0I) — ({VI ,b1) be a loop on M representing the element
m(M,b;) and let 6:(I1,0) — (G,e) and X: (I,0) — (G,e) be the
developments of o and ), respectively, starting at e. 7

a()®,(A) o)™

ﬁ\jgwmnéj

G(HA(1) = 3(1)Dy([A])

—_—

The diagram shows that the develo A
! pment of o x Ax o1 is & x ((1)A
(a(1)®1([A]))(o1)), which ends at ot

FM)@(A)(e1)(1) = &(1)@1 (A)F(1) ™ = es1)(@1([N])-

The equation (071)(1) = &(1)~! used here comes from Exercise 7.5(a). B
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Proposition 7.12. Let M be a smooth connected manifold, letb € M. and
let f: (M,b) — (G,g) be a smooth map. Set w = f*wg. Then for any curve
o:(1,0,1) = (M, b, ), the development, starting at g, ends at f(z).

Proof. Since (fo)*wg = 0" f'we = o*w, the development of w along
o:(1,0,1) — (M, b, z) is just fo, and fo(l) = f(z). [ ]

Corollary 7.13. The monodromy representation of a Darboux derivative
is trivial.

Proof. Write w = f*wg, where f:(M,b) = (G, g). Replacing f by Ly f
if necessary (which doesn’t alter the Darboux derivative), we may assume
that f: (M,b) — (G,e). For any loop A: (I,0,1) — (M, b, b), the proposition
says that the development, starting at e, of w along A ends at faAQ) =
f(b) = e. Thus o, ([N]) =e |

The Fundamental Theorem

Now we can assemble our results into the following statement, the funda-
mental theorem of nonabelian calculus.

Theorem 7.14 (Fundamental theorem of calculus). Let G be a Lie group
with Lie algebra g. Let M be a smooth connected manifold and let w be a

g-valued 1-form on M. Then

(i) dw + 3w,w] = 0;
(ii) the monodromy representation

{w is the Darbouz derivative} N
®,:m(M,b) — G is trivial.

of some map M — G

Moreover, if these conditions are satisfied, the integral of w is unique up to
left translation by a constant element of G.

Proof. The last statement is just the uniqueness of the primitive, The-
orem 5.2. For the implication =, (i) is shown in the discussion following
Definition 5.1 and (ii) is Corollary 7.13.

Let us verify the implication <. Define f:(M,b) — (G, e) by declaring
f(z) to be the endpoint of the development of w along any path from b to
2. This definition makes f well defined under homotopies of the path by
Theorem 7.7 and under general changes in the path by the very definition
of monodromy, Definition 7.9. We need to check that w = wy.

Note that the value of f(z) may be obtained in two steps as follows. If
xo € M, we may choose a path from b to Zo and then another from Zo
to z. Then if the development of the first path starts at e and ends at go,
while the development of the second starts at e and ends at g, then the
development of the composite path will start at e and end at gog-
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Nov.v the local existence theorem guarantees that, for each point zo € M
the}'e isa connected open set U about o and also a smooth map fy: U — d
satisfying fjwg = w. After a left translation of fy by some eleme.nt of G
we may assume that fi;(zo) = f(zo). Now the development of w startin,
at f(zo), along any curve o:(1,0,1) — (U,zo,) ends at fU(m), B thi
remarks in the last paragraph, it also ends at f(z), so fu(z) = f (a;) f}c’)r all
z € U. Thus, f*wg = fijwg =w on U. ]

Some Remarks About the Fundamental Theorem

The fundamental theorem certainly generalizes the usual fundamental the-
orem (?f elementary calculus concerning maps f:(a,b) — R. In that case
conditions (i) and (ii) are automatic, so the theorem reads that ever,
smooth R-valued 1-form on [a,b] is the derivative of some smooth m. ,
f that is unique up to an additive constant. w

It a%so generalizes the theorem that says that a vector field v:U — R"
on a simply connected, open set U of R™ that satisfies the equat;ion

Bvi _ a’uj _

for all ¢ < 7,7 < n, has a potential function. To see this, write v =

Viy---)Un), = drs :
z(mld o }11);\)1(% and set w = > v;dz;. Then w is an R-valued 1-form on U,

_ Ov; ov: v
do= D, g, dwiNdri= > (UJ— v’)dxj/\dxizo.

1<ij<n \<iTi<n \O2i Oz

Moreover, since R is abelian, [w,w] = 0 and hence the structural equation
holds. ’f‘hus, by the fundamental theorem, a function V:U — R exists such
tThat \%4 (_dx)*z w. Now (V*(dz))e; = dz(Vi(e;)) = da(0V/0x;) = OV/Ox;.
hus.w = V*dx = 5 (8V/0z;)dz;, that is, v; = OV/0z;, forall 1 <i < nl
It is worthwhile to see (at least once) the coordinate expressio_n of—th.e
structural equation for a nonabelian group. We shall do this for the grou
Gl,(R). Of course, the same expression then works for any subgroup Leﬁj
;s assume that w is an M,,(R)-valued 1-form on some open set U of .Rm.
hus, for v € T(U), we have w(v) = (4;;(v)), where the entries A;; are
R-valued 1-forms on U. We use the basis 0, = 0/0xp, 1 <p<m anzi set
A, — (Ag;(8y) so that AU — My(R). Then )

dw(0p, 0q) = Opw(9q) — 0qw(0p) — w[0p, 04
= Opw(0y) — 0qw(0p)
= 0pAq — 0,4,

and
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2 0,610y, ) = 29), (30)] = A Aol
Thus, the structural equation becomes

04, _ 04

2 +[4,,A=0 forl<pg=m.
bz, 0% [Ap: Ad

In terms of the entries Azjp (where Ap =321<i j<n Ayjpeij), the structural

equation is

__—6Aijq - gf—l@ + Z (AikpAkjqg — AikgArjp) =0
Oxp Ozq 1<k<n

forlgpqﬁmandlgi,jgn. _ .
The fu’ndamental theorem tells us that whenever we see equat'lons like
these we may interpret the Aps or A;jps as the coordinate eX'pI‘CSS'lOn.Of an
M, (R)-valued 1-form w that on U is locally (and globally 1f'U is simply
connected) the Darboux derivative of a Gl,(R)-valued function _B on U.
That is, B~'dB = w. Moreover, if U is connected, then such a B is unique
up to left translation. ‘ '
pThis is an existence and uniqueness theorem for solutions of a certain
partial differential equation. In coordinates it says that for U connected and
simply connected, and provided the structural equations hold, the system
OB

__—:BAp fOrlSpSm
O0xp

or, the same as above but in more detail, the system

0Bi; _
O0zp

BirArjp forl<p<mandl<ij<n
1<k<n

has a solution,'® which is unique up to left multiplication of the matrix B
by a constant matrix.

The Lie Group-Lie Algebra Correspondence

We end this section with some applications of the fundame_ntal theorem of
calculus to the Lie group-Lie algebra correspondence outlined at the end

of §2.

Proposition 7.15. Let G and H be Lie groups with Lie algebm§ g and b
If G is connected and simply connected, then every h'omomom)hzsm of Lie
algebras p:g — b is induced by a unique homomorphism ®:G — H.

13The solution is a “nonabelian potential function.”
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Proof. The composition w = gwg is an h-valued, left-invariant 1-form
on G that satisfies the structural equation (since dw + 1[w,w] = dpwg +
%[(pu)g,(pwg] = pdwg + %go[wg,wg] = 0). Thus there is a unique smooth
map ®:(G,e) — (H,e) satisfying ®*(wy) = w. We claim that ® is a
homomorphism. To see this, consider f:(G,e) — (H,e) defined by f(g) =
®(go) 1 ®(gog) for some fixed go. Now f = Lg(gy)-1 © P 0 Lg,, and so

ffwg = L;OQ*L;(gO)_Iwy = L;0<I>*UJH = L;ow = w.

Since f and ® agree at the identity and have the same Darboux deriva-
tive, it follows that f = ® and hence ®(g) = ®(go) ' ®(gog), that is,
®(g0)P(g9) = ®(gog) for all g and for all go. |

In particular, connected and simply connected Lie groups with isomor-
phic Lie algebras are themselves isomorphic. More precisely, we have the
following result.

Corollary 7.16. Let G and H be connected and simply connected Lie
groups with Lie algebra, g and b and let ¢: g — b be an isomorphism of Lie
algebras. Then ¢ is induced by a unique isomorphism of groups ®:G — H.

Proof. The existence and uniqueness of a homomorphism ®:G — H is
guaranteed by Proposition 7.15. Since ¢ is an isomorphism, it follows that
the kernel of ® is a discrete central subgroup and so ® is a covering map.
Since H is simply connected, the covering must be trivial and hence @ is
an isomorphism. |

We may also apply these ideas to obtain the correspondence between the
representations of a Lie group and the representations of its Lie algebra.

Definition 7.17. A representation of a Lie algebra g on a finite vector
space V is a Lie algebra homomorphism p: g — gl(V). *®

Corollary 7.18. Let G be a connected and simply connected Lie group with
Lie algebra g. Let V be a finite-dimensional vector space and let p:g —
gl(V) be a representation. Then there is a unique representation R:G —
GI(V) satisfying Rye = p.

Proof. Apply Corollary 7.16. |

Finally, we want to show that every (real) Lie algebra is the Lie algebra
of a Lie group. For this we use (the real version of) Ado’s theorem, which
we state without proof.

Theorem 7.19 (Ado’s theorem). Every real Lie algebra g is isomorphic

to a subalgebra of the Lie algebra gl(V) for some finite-dimensional real,
vector space V.
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Proof. Cf. [M. Postnikov, 1986] or [W. Fulton and J. Harris, 1991]. W

Theorem 7.20. Let g be an arbitrary, finite-dimensional, real Lie algebra.
Then there is, up to isomorphism, a unique connected and simply connected
Lie group G whose Lie algebra is isomorphic to g.

Proof. By Theorem 7.19, we may regard the Lie algebra g as a subalgebra
g C gl(V), where gl(V) is the Lie algebra of the Lie group G! (V). By Exer-
cise 6.3, there is a unique connected Lie group Go C GI(V) with Lie algebra
g. Let G be the universal cover of Gy. Then by Corollary 8.11,'* Gisalsoa
Lie group with Lie algebra g and it is connected and simply connected. By
Corollary 7.16, if G’ is another connected and simply connected Lie group
with Lie algebra g, then G and G’ are isomorphic. ]

§8. Monodromy and Completeness

In this, the final section of this chapter, we study the monodromy group
from the viewpoint of covering spaces. In certain cases we relate the com-
pleteness of a Lie algebra-valued 1-form to the discreteness of the period
group I' = @, (m (M, b)) C G.

Monodromy from the Viewpoint of Covering Transformations

Let 7: M — M be the universal cover of M, and let b € M be a choice
of base point lying over b. Because 7 is a local diffeomorphism, the form
7*(w) satisfies the structural equation when w does. In this case, since M
is simply connected, its monodromy is trivial. Thus, by the fundamental
theorem, there is a unique primitive f: (M,b) — (G, e) for ™ (w).

Proposition 8.1. There is a unique homomorphism &: Gal(M/M) — G
satisfying fT = ®(T)f for every T € Gal (M /M).}°

Proof. Every covering transformation T' € Gal (M /M) preserves the form
7*(w) (since T*(7*(w)) = (7T)*w = 7*(w)), and so we have

(fT)'we = T*(f*(we)) = T"7" (w) = 7"(w) = frwe.

Thus, by the fundamental theorem, fT and f differ by left multiplication
by a constant element ®(T) € G, that is, fT = ®(T)f. In particular,

14ye do not appeal to the statement of Theorem 7.20 in any other proof of
this chapter.

5By Gal (M /M) = {T € Diff(M) | moT = 7}, we denote the group of covering
transformations.
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tf}z"ib) = ®(T)f(b) = ®(T). To see that ® is a group homomorphism, note
a

®(ST) = f(ST (b)) = &(S)f(T(b)) = 2(S)B(T)f(b) = &(S)(T). W

Now we show that the isomorphism o: Ga/ (M/M) — m(M,b) sending
T = [r(\)] (where X is any path on M joining b to T'(b)) relates the two
versions of monodromy. We have the following result.

Proposition 8.2. The following diagram commutes.

Gal (M, b)
&
(o2

mM, b)———» G

Proof. The equation fT'(b) = ®(T) identifies ®(T) as the endpoint in G
of the development of 7*w along a path in M joining b to T(E). Clearly
development of w along the image loop in M starting at b yields the sam(;
endpoint (in G). This fact is the commutativity of the diagram. ]

Completeness

Next we introduce the important notion of a complete 1-form.

Definition 8:3. I__Jet w be a V-valued 1-form on the manifold M. A vector
'ﬁeld'X on M is said to be w-constant if w(X) is constant on M. The form w
is said to be complete if every w-constant vector field X on M is complete.

*®

Examplet 8-.4. Every V-valued 1-form on a compact manifold M is com-
plete. This is a consequence of Proposition 2.1.6, which says that every
vector field on a compact manifold is complete. 2

Example 8.5. Let w be a complete V-valued 1-form on the manifold M.
Let NV be a closed submanifold of M. Then w | N is complete. Note that

this example may be of small content since there may not be any w-constant
vector fields on N. 2

Exgmple 86 The Maurer—Cartan form on a Lie group G is complete.
This follqws since the w constant vector fields are just the left-invariant
fields, which we have shown to be complete (cf. Corollary 2.12). *
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Characterization of Lie Groups

The final result, (Theorem 8.7), shows that in a certain sense the Maurer—
Cartan form determines the group up to some covering. (It is this descrip-
tion of a Lie group that will generalize to the notion of a Cartan connection
on a principal bundle. However, in this we are getting somewhat ahead of
ourselves.)

Theorem 8.7. Let M be a connected smooth manifold and let g be a Lie
algebra. Let w be a g-valued 1-form on M that satisfies the conditions

(i) dw + 3[w,w] =0,

(i) w:T(M) — g is an isomorphism on each fiber,
(iii) w s complete.
Then

(a) The universal cover of M, m::G — M, has, for an arbitrary choice
e € G, the structure of a Lie group with identity element e and Lie
algebra g whose Maurer—Cartan form is m*w.

(b) The period group I' = ®,,(m1(M,b) C G acts by left multiplication on
G as the group of covering transformations for the cover m:G — M.

Proof. The case m (M) = 1.

Here we have G = M. This case involves five steps. The first shows
how to construct a map f: M — Gl(g) that will eventually be given by
f(g) = Ad(g). The second step constructs, for an arbitrary choice of e €
G = M, a “multiplication” map p: M X M — M satisfying the conditions
u(e,e) = e and p'w = (73 f)"*mw + m3w. The third step shows that f is a
homomorphism with respect to the multiplication y. The fourth shows that
p is associative. The fifth step constructs the inversion map t: M — M, and
shows that ¢ is inversion with with respect to p.

Step 1. Corollary 5.3 shows that f: M — Autpic(g) should have Darboux
derivative 75 = ad(w) (€ glLie(g)) and satisfy f(e) = e. Thus, the form w
will determine f, provided n = ad(w) is integrable. But

i+ Linn] = () + S ade), 0] =ad -+ Jal) =0

and since M is simply connected, it follows from the fundamental theorem,
Theorem 7.14, that 7 is the Darboux derivative of a unique map f: M —
Gl(g) satisfying f(e) = e. In particular, df = foad(w) (where the product
on the right is composition of elements of gl(g))-
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Step 2. We construct the multiplication map. Proposition 4.10 shows that
u: M x M — M should have Darboux derivative at (z,y) € M x M given

by
n =t (Ad(y " )w) + mjw = 7} (f(y) "'w) + Tw = (13 f 7w + THw,

where 7r,':‘M X M — M denotes projection on the ith factor. Thus, the
form w will determine yu, provided 7 is integrable. Now

1
an + 11,7 = w3 (A ) () + 73 () () + 0 )
1
+ 30 @) w7 @)
I ), mie] + 2 Inse, )

= T ()1 (@) + () (o + 5, ])

—————
0

(o + gl + () (), el
0

Since d(f~!) = —adw o f~! and!®

m3(~adwf™1)(7} (w)) = —m3 (adw)m3 (f 1) (7} (w))
= —[m3w, 73 (f 1) (71 (W))]
= —[m3(f 1) (7} (W), m3w],
it follows that dn + 1[n,n] = 0. Since M is simply connected, the funda-

mental theorem shows that 7 is the Darboux derivative of a unique map
p: M x M — M satisfying p(e,e) = e.

Step 3. We show that f: M — M is a homomorphism with respect to u

in the sense tl-la.t fu(z,y)) = f(z)f(y) for all z,y € M. We shall verify
the commutativity of the following diagram.

MxM—”—>M

xs 1 lf

Glg) x Glfg) ~— Gl(g)

It is cl(?a_r that this diagram commutes at (e, e). Since M is connected, by
Proposition 1.4.19 it suffices to show that the Maurer—Cartan form wg; on

16 .
Note that by Exercise 1.5.20, the bracket is symmetric on 1-forms.
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Gl(g), with values in gl(g), pulls back to the same form on M x M along
the two possible routes. That is, we must show that

(f o p)war = (paro (f x ) war-
Calculating the left-hand side at (z,y) € M x M, we have

(f o p)*war = p* f*war = p*(ad(w))  (where ad(w)v = [w,v])
= ad(p*(w))
ad(m3 (f 7 (mjw) + mow)
= ad((f (v) (miw) + m3w)
= Ad(f " (y))(rlad w) + nyad w (since 1 (y) € Autric(9)),

while the right-hand side is

(pero (f x ) war = (f x f) parwar
= (f x f)*{m3(Ad™)(mwer) + ToWGL
= (20 (f x f))"(Ad™)(mwar) + (2 © (f x f))wai
=(f °7T2)*(Ad—1)((f om)*war) + (f o m2) wa
= (Ad(f(y) ")} Frwa) + T f war
= (Ad(f(y) M (riad w) + mrad w.

This verifies that f is a homomorphism with respect to p.

Step 4. Now we show that u is associative. We shall verify the commu-
tativity of the following diagram.

uxid
MXMXM——>MXM

idxul lu

MxM—r— s M

It is clear that this diagram commutes at (e,e,e). Since M is connected,
it suffices to show that the form w on M pulls back to the same form on
M x M x M along the two possible routes. That is, we must show that
(po(uxid))*w = (po(idx p))*w. Calculating the left-hand side at (z,y, 2) €
MxMxM,andusingpi:MxMxM——>M,p,3:M><M><M——>M><M
to denote projection to the ith or 4 jth factors, we have

(wo (u x id))*w = (p x id)"p"w
= (p x i) (f(2) ' Miw + m3w)
— f(2)" (m o (u x id))"w + (m2 0 (p x 1d))"w
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2)"Hpo pr2)*w + piw

2) " plaptw + phw

2) "ot (fly) I miw + mhw) + phw

2) T f(y) "N (m o pr2)*w + f(2) 7 (w0 pr2)*w + p3w
2)7H(y) Tt otw + f(2) T osw + phw.

I
S

On the other hand,

(po(id x p))*'w = (id X p)"p*'w
= (id x p)*(f(y2) " miw + m3w)

yz) ' plw + phoptw

42) " piw + o (f(2) " i + )
yz) 7 piw + f(2) 7 (m 0 pas)*w + (72 0 paz)*w
y2) " piw + f(2) " phw + p3w

(2)7 f(y) " piw + f(2) 7 pw + piw.

This verifies the associativity.

I
i i e in s

Step 5. Finally, we construct the inversion map. Proposition 4.10 shows
that ¢: M — M must have Darboux derivative given by

n=-Ad(@)w = —fw.

Thus the form w will determine ¢ i
; , provided we can sh — i
integrable. But since ow that —fw is

1
dn+ 3l = ~dfw = f dw+ 3 flo,]

=-fad(w)w — f {—%[w,w]} + %f[w#*’]
= —flw,w] + flw,w] =0

an_d M is simply connected, it follows from the fundamental theorem that
7 is the Darboux derivative of a unique map «: M — M satisfying t(e) = e
H(O\Eve;/er,) we must still verify that ¢ is the inverse map, that it satisfies
pu(t(z),z) = e. For this we shall verify the commutativi i

PN y mutativity of the following

MxM txid Mx M

AT l”

M——eeM
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It is clear that this diagram commutes at e. Since M is connected, for the
general commutativity it suffices to show that the form w on M pulls back
to the same form on M along the two possible routes. Since it obviously
pulls back to 0 via the lower route, we must show the same for the upper
route, namely, that (u(¢ x id)A)*w = 0. Calculating at = € M, we have

po (1 xid) o A)*w = A*(¢ x id)* p*w
= A*(u x id)*(f(z) ' miw + mow)

= A*(f(z) " (e x id)*mfw + (¢ x id)*m3w)
= A*(f(z) "m0 (¢ x id))*w + (m2 0 (¢ x id))"w)
N

= A*(f(z) " 'm i w + mow)

= A*(f(z)" i (— f(2)w) + T3w)

= A*(—-mjw + Tow)

= —(mA)*'w+ (mA)'w=-w+w=0.

)M (tom)'w + mw)

Thus, ¢ is an inverse for p.

The case m (M) # 1.

Here the form w on M pulls up to the form 7*w on the universal cover G
of M. Clearly, m*w satisfies the same three conditions on G that w satisfies
on M. Thus case 1 applies to the pair (G,w), and we see that for any fixed
choice of e € G there is a Lie group structure on G for which e is the identity
and m*w is the Maurer—Cartan form. By Proposition 8.1, there is a unique
injective homomorphism ®: Gal (G/M) — G satisfying ®(T)g = T(g) for all
T € Gal(G/M). Thus, the group of covering transformations is identified
with the period group, a discrete subgroup I' C G. |

Remark 8.8. Dropping condition (iii) in Theorem 8.7 still leaves us with
the manifold M, which is locally a Lie group.

Remark 8.9. If we drop condition (i), we are left with what may be
regarded as a “deformation” of a Lie group. For example, we might consider
altering the form w, which does satisfy (i), (i), and (iii), by the addition
of a small form 7 such that w; = w + tn still satisfies (ii) for t € [0,1] so
that w; is a deformation of w. The new form may also satisfy (iii), but it
will not, in general, continue to satisfy (i), and so we will not even get a
Lie group locally.

Remark 8.10. Except in special cases, we cannot weaken condition (ii) to
the following

(i) w:Ty(M) — g is an injection for all z
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and still expect to obtain a discrete monodromy group. For example, we
could take the case where G = Sl3(C) (so that g = M3(C)o, the 3 x 3
matrices of trace 0), M = S!, and w is the g-valued 1-form on S! which
is the composite pwys, where wys is the Maurer-Cartan form on S?, and
¢:R — g is the Lie algebra homomorphism given by x — diag(iz, V2iz,
—(1 4 v/2)iz). Of course, locally, ¢ is the derivative of the locally defined
map S} — T2 C Sl5(C) sending e'® — diag(ei®, eV%iz, ¢~(1+V2iz) The
form w satisfies the structural equation automatically, since the dimension
of M is 1, and since M is compact w is complete. Moreover, condition (ii)’
is obviously satisfied. What is the monodromy group I" of w? Clearly, it is
the subgroup generated by the element diag(1,e2V2™ ¢=2V2im) ¢ T2 and
this subgroup is not a discrete subgroup of G.

Corollary 8.11. Let G be a connected Lie group and let m:G — G de-
note the universal covering space. For any choice of € € 7w~ 1(e), there is a
unique Lie group structure on G such that € is the identity and ™ is a ho-
momorphism_of Lie groups. Moreover, the kernel of m is a discrete central
subgroup of G.

Proof. First we note that if such a Lie group structure exists on G, then
(by Proposition 2.9) the Maurer—Cartan form on G is m*wg. Thus, we are
led to define a g-valued 1-form on G by w = m*wg, and this form satisfies
the structural equation since

1 . 1
dw + E[w,w] =dr*wg + i[w*wg,w*wg]
. 1
= dwg + éﬂ*[wG,wG]

. 1

=1 (de + i[wg,wg])

=0.
Since 7 is a local diffeomorphism, not only is w: T(G) — g an isomorphism
on eacl.l fiber but also w is complete, since integral curves for wg on G will
lift to integral curves for w on G. By Theorem 8.7, given é € 7w 1(e), G
bas a unique Lie group structure with € as the identity and for which w
is the Maurer—Cartan form. By Theorem 5.2, 7 is the unique map G, é—
G, e pulling back w from wg, and then by Proposition 7.15, = must be a
homomorphism.

Finally, since ker 7 C G is a discrete subgroup of a connected group, the
function -
f2:(G,€) — (ker m,€), where z € ker T,

g g lzg

Iélust be constant. Thus, f,(g) = f.(€) = z, and hence ker 7 is central in
. ]
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The Classical Period Mapping

Remark 8.12. This final remark constitutes a brief discussiont(})lf th(; f)loai;
sical period mapping and is addressed to _those who know sfome ing oout
complex analysis. Let M = M, be a lezmann surface o gemllﬁ gl._forms
H(M,,C) = 729 is spanned by g I:zlosed (1.23., dw = B))h(f%(;lrgoirspalcc L-forms
i j . Let w = (w1,...,Wg)-

(;)olr’m .o,nwiéfan;ivitlkiegalclga?lilgag; = R29 which is the (abelian) L'ie allsfbra
of CY (so tﬁat [w,w] = 0). Thus, w satisﬁes' the structural equaiclon.nalogis
over, it is complete since M is compact. It 1s.kpow.n from comp exeaM an
that w: Tp(M) — C9 is complex linear and mJectlYe for every pst M and
that the period group is discrete. However, the period group 1mu) ¢ contain
a basis for C9, for if it were merely to span a proper (complex p

V, then the composite
period

mappingA, L projection% v

would give a nonconstant holomorphic function on ]\/It , q‘k}llich, 2};;261 ;nuai.)cce—}
i inci is i ible for M compact. Lhus,

imum modulus principle, is impossi mp: s ) attiee
i C9/L, which is classically calle

n C9, and we get the map My — 2 / .
1per'iod mapping. The receiving group C9/L is called the Jacobian variety.

4

Shapes Fantastic: Klein Geometries

Let us now do away with the concrete conception of space . . .
and regard it only as a manifoldness of n dimensions .... By
analogy with the transformations of space we speak of transfor-
mations of the manifoldness; they also form groups. But there is
no longer, as there is in space, one group distinguished above the
rest by its signification; each group is of equal importance with
every other. The following comprehensive problem then arises
as a generalization of geometry:

“Given a manifoldness and a group of transformations of the
same; to investigate the configurations belonging to the mani-
foldness with regard to such properties as are not altered by the
transformation of the group.” —Felix Klein, 1872

During the 19th century, non-Euclidean geometry made its appearance
with the independent discovery by Gauss, Bolyai, and Lobachevski of hy-
perbolic geometry in the plane. This geometry is very close to Euclidean
geometry, satisfying as it does all the axioms except for the existence of
a unique line through a point parallel to a given line. Elliptic geometry,
the geometry of antipodal pairs of points on the sphere, appeared and
again was non-Euclidean in this strong sense. In fact, another geometry,
spherical geometry, had been studied by navigators for centuries, without
being considered as “non-Euclidean” since it has models in Euclidean 3-
space and perhaps also because, considered in its two-dimensional aspect,
it more violently violates the axioms of Euclidean geometry. In the course
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of a few decades, the number of these new geometries proliferated to in-
clude affine geometry, projective geometry, Mobius geometry, Lie sphere
geometry, Laguerre geometry and so on. FEach geometry has its own set
of theorems, that is, its own theory. In addition to this there are relations
among the geometries. For example a theorem that seems to belong to Eu-
clidean geometry might still be true in projective geometry. Moreover, a
purely projective proof, which could employ the larger group of projective
symmetries, might well be simpler.!

It was Felix Klein’s idea to bring order to these new geometries by means
of the unifying notion of the principal group? of a geometry. He noticed
that each geometry, M say, is & connected manifold and has a Lie group
G of “motions” acting transitively® on it and, moreover, all the properties
of figures studied in the geometry remain invariant under these motions.
If, in addition, the action is effective,* we may speak of an effective Klein
geometry. It is this group G of motions that Klein called the principal group
of the geometry, or more briefly, the group of the geometry. In the case of
Euclidean geometry, the properties studied are angle and length, and the
group is the group of rigid motions; for projective geometry, the properties
are concurrence of lines and collinearity of points and the group is the
group of projective transformations, and so forth. Thus, Klein extended
the notion of geometry by defining a geometry to consist of a Lie group G,
a smooth manifold M, and a smooth, transitive, and effective action of G
on M.5 The study of such a geometry is the study of those properties of
figures in M that remain invariant under the action of G.

1 Agsociated to each of these geometries is not only a simple theory (a goniom-
etry) in which one studies figures like triangles but also a differential geometry in
which one studies the “figures” consisting of smooth curves and surfaces in the
geometry. A great deal of effort was spent in studying these generalizations of
differential geometry in the last decades of the 19th century and in the first four
decades of this century.

2Klein called this group the haugtgruppe of the geometry. In his translation of
Klein’s Erlangen program [F. Klein, 1872], Haskell renders this as principal group.
This has the two-fold advantage that the modern notion of a principal bundle
generalizes this group and that the competing English term fundamental group,
which many authors have used, is easily confused with Poincaré’s completely
accepted use of the latter term for m1(M).

31et G x M — M sending (g,z) — gz be a group action. Recall that the
action is said to be transitive if, for any pair of points z,y € M, there is an
element g € G such that gz =y

4An action is said to be effective ifgr=xzforallz € M implies that g is the
identity element of G.

5The formal definition of a Klein geometry is given in §3. We shall not insist
on an effective action.
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thi(i;l;:: 2 ;g\;r;er?}llization of geometry allows us to shift the emphasis from
o the group G in the following m

o : g manner. Let us fix a base point

ifethe a(’:I‘t?en ?}lfre is a map G — M sending g to gz. By the transigvity

o ({)n, is map is on‘zo;f but it is not one to one. The inverse image
7 Hz)={zreG|lgr=2}= H, is

- ( « 18 clearly a closed subgrou i

(é?llled tile stabilizer of . Moreover, if y € M, it is clear thagt ﬂ—% ((g)/f)ci {It IGS

thatgjcr ?nz} = gOH?‘, wbere go is an arbitrary element of 7~ 1(y). It follgws

uces a bijection G/H, — M. The condition that the action be

effective translates into sayi
ying that th =
all p € M} is trivial. ¢ ¢ subgroup N =1y € G gp=p for

:i})l)i(se:ci)se 0.1. If 'we do not assume that the action is effective, show that
ubgroup N is the largest subgroup of H, that is normal i7n G a

Th i

o Esa,sgo sgn;marlze, we may say that instead of describing a geometry
vk equaﬁ;nvlv el?sda pe.mg (M ,Z) together with its principal group G, we

escribe it as the pair (G, H), where H = H, i :

‘ , = is a cl
%Egrg;p of G Of course, all this depends on the choice of b;se poirftszd
o se Pomt may })e Fegarded as “a constant of integration,” whicl;

ppears in the infinitesimal description of Klein geometries ,

Exercise 0.2. Show th i i
Iy at different choices of z lead to conjugate subgroups
2

It i . .
o :sf:oli?ra Itl};a;;tlﬁl t}tl)ese Klein geometries it is impossible to distinguish a
er by properties of the geometry si iti
fr ‘ y since, by definit
‘;infiltllvi action of G preserves these properties. Thus, th:3 Izlein ;;olr?lzzcrtitle:
y homogeneous. We might s ?
At ght say that they are “flat” or that they have
Al i
- th?:iﬁil;t‘:: le;ndd tth}f garr;g “K;eln geometry” to the geometries studied
— e justice of this should be clear fi i

i pter : ar from the quotat

iy W:cl;; :)egirlllmng of the chapter—Klein himself was interested inqonl;L ;?12
o e: ' it correspond most closely to our experience: projective ge-
geome}tlri er; F} }Sl sons and daughters, the parabolic, Euclidean, and elliptic
- It. us, he would have felt our present point of view to be too
gener t was that remarkable pioneer Wilhelm Killing whose passion it

" o try to understand these geometries in general
ur aim in this chapter is not to stud ie
: y the theories of individ i

. ividual K
geometries, but rather to try to understand their nature in general e
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§1. Examples of Planar Klein Geometries

Let us see how Klein’s ideas, described in this chapter’s Introduction, work
ases of more or less familiar two-dimensional geome'cries.6 Each of

in some ¢
gle example drawn from an infinite

these planar geometries is merely a sin|
series of higher-dimensional analogs.

«School Geometry” (the Euclidean plane). In this case M = R2. The
Lie group of symmetries or congruences or rigid motions’ is

o me={(1 )0 = (S0 )= ()}

which acts on M by the formula

(11) R(()9)>.:c=R(0):c+v, wherex_:(‘;;)_

An easy calculation shows that the stabilizer of the origin of R? is the
subgroup of rotations

H = SO3(R) = {((1) R(()9)>‘0 € R}.

Then we have the basic identification Bucy(R)/SO2(R) =~ R?. In fact,
Eucz(R) ~ SO2(R) x R? (the semidirect product with respect to the

standard representation of SO2(R) on R?).

Next follow the two non-Euclidean® geometries.

Hyperbolic Plane. In this case M = {z =z +iy € C | y > 0}. The
group is the group of Mdbius transformations G = Slo(R) = {4 € M>(R) |
det A = 1}, which acts on M by the formula

a b . az+b

c d T ez+d
It is easy to check that this is indeed an action on M and also that the
stabilizer of the point i € M is the circle group

6 A complete list of all 23 families of two-dimensional Klein geometries (13 of
which are singleton families) may be found in [B. Komrakov, A. Churyumov, and
B. Doubrov, 1993].

70Of course, in picking this group we have rather arbitrarily chosen to ignore
the orientation-reversing congruences. In fact, there are actually two distinct
interpretations of “school geometry.”

8That is, non-Euclidean in the strong sense. See the introduction to this

chapter.
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SOx(R) = {A € My(R) | det A =1 and AA! = I}.

Elhp(tlzi:::1 Plane. This is the real projective space P?(R), which may be
regz;. e lag th_e set of unoriented one-dimensional subspaces of thre}e’-di—
::11112 rt;o:fzip2zlfc{1;<i‘?an spice R3, with coordinates zg, 21, 2. (The coordinate
are” the 2-planes in R3 that avoid the origi
. igin, cf. E
:};?;,lt'ghg gl('loupt is SOfg‘éR), whose action on the lines in R3 is indli{caercrll%;
ndard action of SO3(R) on the ambient s 3
. of : pace R°. The stabili
a line, say the zo-axis, is O2(R), which is embedded in SO3(R) vi; rer ol

A (detA‘1 0)
0 Al

Compl i i
plementing these, we have a series of six other geometries

(E;n(le;x:legyt of Similarity. This geometry is a relative of Euclidean ge-
y that may also be regarded as a part of “school geometry.” Here

M = R? and the i i
group is the two-dimensional i
G = H x R? (semidirect product), nel conformal group given by

H= + 0
{AeGlz(R)AAt=<TO TQ) forsomereR}.

An element A € H has the form A = <TC°SH —rsinf

rsin@ rcosf ) acting by matrix

multiplication on the plane.

Lorentz (or Minkovski) Plane. Here M = R2? and the group is the

oriented two-dimensional Lorent i
. - .
), group given by G = H x R? (semidirect

H=0{,(R) = {4 € SL(R) | A'SA =%}, whereE:(1 0>
0 —-1/°

An element A € H has the form A = cosh @ sinh 6
sinh & cosh g ) (& boost) acting

by matrix multiplication on the plane.

Affine Plane. Here M = R? )
group given by and the group is the two-dimensional affine

G = Affi(R) = {(i g) e Gl;(R)’A € Gl (R), ve R2} .

0
A -x = Az + v, where z

and v are column vectors. Again, it i i i
the orite o . Again, it is easily verified that the stabilizer of

The action on M is given by the formula
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_J(r 0 + ~ GIF i
H= {(0 A) € GlS(R)\A € Gly (R)} ~ Gl3 (R) {3890]5)1’11:1:1'6 Plane (cf. [T.E. Cecil and S.-S. Chern, 1987] or [T.E. Cecil
. From one point of view, the space here i , i 07 N
: 2 > e is the quad i 3
and G ~ H x R? (semidirect product). ngl\(’)efnl'by “‘mot';x% + 2% — 22 = 0. From another point o?viev?citQisntlhfs;R)’
ines on the quadric Q. A appears to be more i ) ace
ore im i

Real Projective Plane. The space is the real projective space P2(R) just geometry thel} Q (cf. the references cited above). Igggzzat foé.Lle sphere
as in the elliptic case, but the group is now the full general linear group so this space is not a two-dimensional geometry, and we wrh m A =3
Gl3(R). The group Gl3(R) acts on R3 in the standard way and so it also remarks to Q, .which does have dimension 2. @ is 1’:he pro 'ecti1 — ‘ou;

acts on the “lines” in R3. The stabilizer of the zo-axis is H, where of a h}{p erboloid of 1-sheet in R? given by 2% + z3 — 23 _] 1 ai:ltilcon?p lg%im
morphic to a torus. Th . 3~ SO 1s dilieo-

diagram. ese facts can be pieced together from the following

g (> V) ecn®)|AcCh®), veR, AR
(3 ) conmlaccum )

and N = {\ € GIz3(R) | A € R*} is the largest normal subgroup of G in 0

H. .
universal cover

of the quadric
——

s

Mobius Plane. Next we consider the Maébius plane. Here the space M is
the standard 2-sphere, $* = {z € R3 | 22 + 2§ + 23 = 1}. The principal
group is the oriented Lorentz group L3z 1(R) = {A e SLR)| AT A =%},

|

where — N
0 00 1 v

0 10 0 The finite points of ) h. i i
0 10 | oo iteQ iate the interpretation as (?riented O-spheres on S*
. 0 00 n' meeting the circle on the light’coze giveet lE;y P —te nrt WO l 1n )

‘ ‘ n T3 =11 disti

- - B —i . 01t o describe the action. ¢ Lorentz oriented pomts. (one plus, one minus), that is, in an ?())rient;d ;e (o} (plsltll Cat)
r e i 0 4dsfﬁtu t to ed N elbSets fat 8011 ratic for s n tends to infinity, the two points of the corresponding splfe (Se oe mreov'
h The Loren A T €

~ 9zoz3 + o2 + a3 are preserved. In particular, the light cone L, given by together to yield an unoriented point sphere in the limit

—9zozs + 73 + a5 =0, I8 preserved. Now the light cone is homogeneous
in the sense that if z € L, then Az € L for all A € R. Thus, L is a union the circle in the plane x3= 1
of lines through the origin, and the linear action of G on R* restricts to ’
give an action on this set of lines. Each such line meets the hyperplane
To+ T3z = v/2 in exactly one point, so the set of lines in the light cone may
be identified with the intersection

Lﬂ{:ceR4lx0+13:\/§}
={xeR4|mo+z3=\/§,—2$013+ﬁ+$§=0}-

The change of variables

zo=(1 +y0)/ V2,71 = Y1,T2 = Y2

2= (1— \/—2_ *Bri i
3= (1—-%)/V2 (o Brlef;y,) glveﬁnany set of polynomials P;(z) = 0, j = 1 r, wh
(@ - {m, enR"€| P'(;)w—e 0haJ\_/e, i)n the }org hand, the locus 5( -(.:’ l’:t:v geif/ee:nx b;
1 Hle)=0,9=1,...,ry. n the other h i
:h:t‘polynomlals P; to get polynomials Q; in the vea,l;ia?arlltgs, 7‘; e—m(?; hOmoge)nlge
" A = (zo,...,T
ng Q;(y) = x4’ Q;(x/x0), where the powers d; are chosen just larger erfougi

to make the @s pol i
This yields the action of G on S2. a e Qs polynomials. Then the equations @ = 0 h >,
nd Y NR"™ = X. Then Y is called the projective completic?r‘ieo? )l? ous ¥ P

identifies the set of lines in the light cone with the 2-sphere

(yeR®| g2 +u3+v5 =1}
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(A point sphere can be perturbed in a pencil of spheres containing two
copies of each unoriented sphere, one for each orientation; a point sphere
may be thought of as the moment of change of orientation in a pencil
of infinitesimal oriented spheres.) The group is G = 07,(R) = {A €
Sly(R) | A'TA = X}, where Y = diag(-1,1,1,-1). G acts transitively
on the quadric, and we take H to be the stabilizer of the line spanned by
(1,1,0,0) corresponding to the equatorial 0-sphere S0 consisting of the two

points (£1,0, 0) in the figure above.

eometry, which, although identical to one

We mention one other plane g
dimensional incarnations becomes an in-

already considered, in its higher-
dependent geometry.

Complex Projective Line. Here M = S?, the Riemann sphere (or the
complex projective line), and the group G is the group of Mdbius transfor-

mations of M, G = Slz(C), with
H= {A = Slg(C)\A - (: 2)} .

Exercise 1.1. Show that Sla (C) is isomorphic to the Lorentz group and
that the complex projective line is the same as the Mobius plane. a

§2. Principal Bundles: Characterization and
Reduction

The examples of the last section make it clear that the study of “non-
Euclidean geometry” really is the study of the left coset spaces G/H, where
H is a closed subgroup of the Lie group G. There are, however, some
technical questions that begin to arise. For example, it is not so obvious
that a geometry in Klein’s sense is always a smooth manifold. The purpose
of this section is to deal with this difficulty and also to show that the map
G — G/H is a principal H bundle.! In fact, in anticipation of later need,
we shall prove something still more general. We are going to characterize the
principal H bundles P — M in terms of properties of the action PxH — P.

At the end of the section we give a brief study of the notion of a reduction

of a principal bundle.

Definition 2.1. Let P be a smooth manifold, H a Lie group, and PxH —
P a smooth action.

10gych bundles constitute the first and motivating examples of principal bun-
dles; the Hopf bundle Sl — 8% — S? studied in the first chapter is, of course,

among these.
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(i) The action is called free if ph =p forsomepec P = h=e

(ii) The action is called i
properif A
0} is compact. per if A and B compact = {h € H | AhNB #
*®

p . )
T;gsc;;t;c;; 2.2 Let G be a.Lze group and H C G a closed subgroup
on G x H — G given by multiplication is free and proper. '

Pr}g:;f. Frree gctwn: If gh = g, then multiplying by g~ yields h = ¢

- A’p;eg cht;og:} L\e{f A }z:nd B be CO{npact subsets of G, and let K = {he

HiAOB uer.l es Igw that K is compact. Suppose that hiy, ho,... is

b q ; I(l:e l;nsucil ’f}tl:: C:h}izre aze i;lﬁnite sequences ai,as,... in

,bo,. .. jh; = b; for all j. Since A i

twoe fag a;):iuis t;)oa SLflbsequence J C {1,2,...} such that {a;};e JS ccgggfgc;:

o Comg,er ea turltjher subsequence L C J, we may also assume that

evér§esequenceg sKoh . Thus {h; = (a;)'b;}jer converges to ba~! and
in as a convergent subsequence. Thus K is compact. I

N . . .
ext we verify that right principal H bundles have these properties

Proposition 2.3. Let £ = (P,
) e = (P,m,M,H) b ; o
the action P x H — P is free and pro?ve:, a right principal H bundle. Then

Proof. The fact that the bundle is locally a d
canoni(?a.l right H action, shows that th Y tion is e The arem tl'le
1; T;P((;?ltlt(ﬁ; 2.2 shows that, for any sequini:iat l?;zlj 1}S iflre; ih{ehaégllfln}ezthlg
Bl b, reS;(; ;rii slequences {aj}jer in A and {b;};er in B converging to
7r(a~h~),: b, fe VA an(_i such that ajh; = b; and for all j. Now 7(a;) =
Wejcléim thatj)lin?ihall Jj, so m(a) = m(b). Thus a = hb for some h EJ H
the terms in the sequﬁfeg 1i:e 1’:1 :;.r :iszfet(tl(js’ (;l e et T s O%
. .
;;)C?s:,utr)ne w]e have the trivial bundle P = (J)\/I 1;{}36.3 (l;l;?)ggcg:; :1??}:: 1;;
il zlae _ela.ds to the equation p(a;)h; = p(b;) in the group H. Thu
thas/; Cézl p(bj)}jer converges to p(a)~1p(b). Thus, every se nco in
vergent subsequence. ’ e l:

N . .

Charzivt we con}ple.zte this cycle of ideas by showing that these properti

ch elrlze principal bundles over a smooth manifold. We have the ? 11 -
g result whose proof, being rather technical, is given in Appendix (};) o

Theorem 2.4. Let P be a ;
4. smooth manifold, H a Lt :
P a smooth, free, proper right action. Then teroup, and i Pt =

(i) P/H with the quotient t ; .
dim P — dim H), nt topology is a topological manifold (dim P/H =
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(ii) P/H has a unique smooth structure for which the canonical projection
n: P — P/H is a submersion,

(iii) ¢ = (P, P/H,H) is a smooth principal right H bundle.

Example 2.5. It is important that the action be proper. For example,
in the case of the right action G X H — G by a subgroup H C G, if
the subgroup is not closed, then the action is not proper and the quotient
G/H need not be a manifold. The standard example of this is the case
of the torus G = T? = R2/Z? and an irrational subgroup H of G. To
describe the meaning of this, we pass to the universal cover G = R?
with the corresponding lattice Z* = {(a,b) € R? | a,b € Z} as kernel of
the projection map R? — R2/Z2. Let Hy = {(t,v2t) |t € R}. In G; the
subgroup Hj is a straight line, so it is closed. However, since /2 is irrational,
its image H in G is a dense subgroup; in particular, H is not closed. To
see how bad the quotient topology on G/H is, note that if f: G/H - R
is any continuous function, then its lift to G is also continuous. Since f
is constant on a dense subset of G, it is constant everywhere. Thus there
are no nonconstant continuous functions on G/H. In particular, it is not a

*

manifold.

Example 2.6. From the preceding example we might be led to wonder if
the problem arises only from the fact that the torus T2 fails to be simply
connected. Might it be true that for simply connected groups G, subalge-
bras of g may always be realized as closed subgroups of G? The answer is
again no in general, for many simply connected groups contain the torus
as a subgroup; and so the phenomenon of the previous example persists.
For example, Sl3(C) is simply connected, and yet it contains the torus T?
as the subgroup diag(e', €*%, e~ i0+¢)) 0,0 € R. *

Exercise 2.7. Show that if G is a Lie group and H is a closed normal
subgroup of G, then G /H has a unique Lie group structure such that the
projection map m: G — G/H is a homomorphism of Lie groups. W]

Exercise 2.8. Let
p: X xH— X

(a.h) — oh

be a right action of a topological group H on a Hausdorff space X. Show
that p is proper as an action if and only if the map

Xx H—X X X
(z,h) +— (z,z-h)

is proper.

§2. Principal Bundles: Characterization and Reduction 147

Exercise 2.9. Let
pXxH—X
(z,h) ~— zh
ts)ﬁ Oa,wptrlcl);;;ter right action of a topological group H on a Hausdorff space X.
XxHxH— XxH
(z,h,k) — (z-k,k" h)

is also a proper action. Q

Exercise 2.10. Let W be a real n-dimensional vector space. Let Grs(W)
denote tl'le set of all s-dimensional subspaces of W. Show .that Grs(W)
can be given a unique smooth structure such that, if V € Gr (W)s and
W=U GB‘V, then the canonical map Hom(V,U) — Grs(W) sensding f—
graph( f) is a smooth map onto an open subset. [Hint: Fix a basis and an
inner product in W. Show that the map O,(R) — Grs(W) sending A to
the subspace of W spanned by the first s columns of A induces a biiction
of sets O, (R)/(Os(R) x Op—s(R)) — Grs(W).] : 3

Definition 2.1_1. The manifold Grs(W) described in Exercise 2.10 is called
the Grassmannian of s-dimensional subspaces of W. ®

Reduction of Principal Bundles

An important procedure in working wi inci
‘ g with principal bundles is th i
a reduction of a principal bundle. ¢ notion of

Definition 2.12. Let H be a Lie group and Hy C H a subgroup. Let
H - P. — M be a principal H bundle over M. An Hy reduction of- this
bundle_ls a submanifold Py C P such that Py — M is an Hy bundle and
the action of Hy on Py is the restriction of the action of H on P. *®

The following lemma is a i i
preparation for stud i i
reductions arise. Ying one way i which

Lemma 2.13. Let
wGxM-—-M
(g:x) gz
be a smooth left action of a Lie group G on a connected smooth manifold

M. Thgn every orbit X C M of this action is a submanifold. Moreover, if
the action is proper, then X is a proper submanifold. ,

Proof. Fix an orbit X C M and choose o € X. Set H = {g € G | gz¢ =

zo}. It will suffice to show that H i
induced map is a closed subgroup of G, that the
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G/H— M

gH +— g-To
is an injective immersion with image X, and that, if the original action is
proper, then G/H — M is a proper embedding.
Step 1. H is a closed subgroup of G, and the induced map
G/H— M

gH ~— gxo

is injective with image X.

Since p~ (o) is closed and H X o = pH(zo) N (_G X ), it follows that
H x xp is closed in G x M and hence H is closed in G. The fact that the
map is injective with image X is clear.

Step 2.
G/H— M
gH +— g'To
is an immersion.
Define UG M
g — g~130

and note that ¥~ (z¢) = H. Set V = ker ¥y, C T.(G) =9 the Lie a,lgebr'a
of G, and let h denote the Lie algebra of H. Since ¥ is cc?nstant on H, it
follows that U ,(T.(H)) = 0, and hence h C V. We are going to show that
V C b. Since the left translations
Ly:G—G and lgoM — M
h — gh T — gT

are diffeomorphisms, and since ¥ o Ly = ly0 ¥, it follows that
‘Il*g o Lg*e = lg*a:o o ‘Il*ev

and hence ker ¥, = Lgseker(¥xe) = LgxeV forall g € G. Thuson G, ¥ has
constant rank r = dim g—dim V, and so by Theorem 1.1.31 the components
of the level surfaces of ¥ foliate G with codimension r. The component‘ of
the identity in ¥~(zo) = H is the identity component :subgroup Hy W'lth
Lie algera h. Thus V C h and so V = h. Now consider the following
commutative diagram.

T(G)

[

T.y(GIH) —> Tex (M)
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Since the two downward arrows in the diagram both have the kernel
Lg..V, it follows that the bottom map is injective, so

G/H—- M
gH — gxo

is an immersion.

Step 3. If the original action is proper, then G/H — M is a proper
embedding.

Suppose that u: G x M — M is proper. Let C C M be any compact set.
Then

UHC) ={g € G| gzo € C},

and the latter is compact since C' and {z¢} are compact. Hence the image
of ¥~1(C) in G/H is also compact. But this image is just the inverse image
of C under the map G/H — M. ]

We now apply this lemma to obtain a simple but useful sufficient condi-
tion for the existence of a reduction.

Proposition 2.14. Suppose that H — P — M 1is a smooth principal
H bundle. Let Q be a manifold equipped with a smooth, proper, right H
action. Let f:P — Q be a smooth equivariant map (i.e., f(ph) = f(p)h
for all h € H). Fiz a point gy € Q, and set Hy = {ho € H | goho = qo}.
Suppose that qo € Q lies in the image under f of each fiber of P. Then

(i) Po = f~(qo) is an Hy reduction of P.

Fiz another point q1 € Q, and set Hy = {hy € H | gthy = q1}. Suppose
that g1 € Q also lies in the image under f of each fiber of P, so that by (i)
Py = f~Yq1) is also an Hy reduction of P. Then

(ii) there exists an element h € H such that Hy = h™'Hyh and, for any
such element h, we have P; = Pyh.

Proof. (i) First we show that Py is a submanifold of P. For this it suffices
to show that f has constant rank. Since gy lies in the image under f of
each fiber of P, it follows that the image of f is the orbit X = qoH C Q.
By Lemma 2.13, since the action @ x H — @ is proper, all the orbits, and
in particular X, are proper submanifolds of Q. Since f takes values in X,
it follows that rank,f < dim X. We show equality by verifying that, for
each fiber, rank(f | fiber) = dim X. But the map that f restricts to on any
fiber is, up to change of coordinates, the map H — X sending h — qoh,
which has rank = dim X by the lemma. Thus f has constant rank and P,
is a submanifold of P.
Next we note that
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h e Hy < goh=qo & [ (q0h) = F (qo) & fH(@)h = £ (20)
& Poh = P,

so we see that Py is stable under the induced action of Ho.
Let p,p lie in the same fiber of Py. Then there is an h € H such that
! = ph € Py. Thus g0 = f(ph) = f(P)h = qoh, and so h € Hp. It follows
that the induced action of Hy on Py is transitive on each fiber of Fp. Since
Py = f~Y(qo) is closed in P and H, is closed in H, the induced action of
H, on P, is proper and free. By Theorem 2.4, Py is a principal Hy bundle
over M and is therefore an Ho reduction of P.

(ii) This part is easy, and so we leave it to the reader. |
Exercise 2.15. Suppose that H — P — M is a smooth principal H
bundle. Let p: H — GI(V) be a representation. Give sufficient conditions
for the following subsets S C P to be reductions.

(i) Let f: P — V transform according to f(ph) = p(h™)f(p). Let vo €
V, and take S = f~*(vo)-

(ii) Let Grn(V) = the Grassmannian of n-dimensional subspaces of V
and p denote the standard action of H on Gr,(V) induced by p.
Let f: P — Gr,(V) transform according to f(ph) = p(h~1)f(p). Let
Vp € Gra(V), and take S = f~' (Vo).

§3. Klein Geometries

Now we are in a position to give the formal definition for Klein geome-
tries, which we have roughly described in the introduction to this chapter.
However, to flesh out the context in which they appear, we first prove the

following result.

Proposition 3.1. Let G be a Lie group and H C G a closed subgroup. Then
there is a unique mazimal normal subgroup K of G lying in H. Moreover,
K is a closed Lie subgroup of H, the left action of G on G/H induces a left
action of G/K on G/H, and there is a diffeomorphism (G/K)/(H/K) —
G/H commuting with the canonical left G/ K actions.

Proof. Let K be the group generated by all the normal subgroups of G
that lie in H. Then K is clearly a normal subgroup of G that lies in H
and is, moreover, the unique maximal normal subgroup of G that lies in
H. Since the closure of K is also a normal subgroup of G that lies in H,it
follows that K itself is closed. Now apply the general result of Kuranishi
and Yamabe (cf. [H. Yamabe, 1950]) that a subgroup of a Lie group is a
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Lie gr.oup11 to see that K is a Lie group. Finally, by Theorem 2.4, the
canonical map m: G/K — G/H is a principal fiber bundle with fiber I1’T /K.
Thus 7 induces a diffeomorphism (G/K)/(H/K) — G/H commuting with
the canonical left G/K actions. |

Definition 3.2. A Klein geometry is a pair (G, H), where G is a Lie group
and H C G a closed subgroup such that G/H is connected. G is called
the principal group of the geometry. The kernel of a Klein geometry (G/H)
is the largest subgroup K of H that is normal in G. A Klein geometry
(G, H) is effective if K = 1 and locally effective if K is discrete. A Klein
geometry is geometrically oriented if G is connected. The connected coset
space M = G/H is called the space of the Klein geometry or sometimes, by
abuse of notation, merely the Klein geometry.'? A Klein geometry is cailed
primitive if the identity component H, C H is maximal among the proper
closed connected subgroups of G. A Klein geometry is called reductive if
there is an Ad H-module decomposition g = § & p, where g and b are the
Lie algebras of G and H, respectively. *®

We use the remainder of this subsection to discuss some aspects of this
definition.

If (G,H) is a Klein geometry with kernel K, then, for any closed subgroup
N C K tha,t. is normal in G, by Proposition 3.1 the pair (G/N, H/N)
is also a Klein geometry with space (G/N)/(H/N) =~ G/H. Of course,
these geometries are all ineffective except when NV = K. This leads to the
following.

Definition 3.3. Let (G, H) be a Klein geometry with kernel K. Then

the Klein geometry (G/K, H/K) is called the associated effective Klein
geometry. *®

Exercis'e 3.4. Let K, be the identity component of K. Show that (G/K.
H/K.,) is a locally effective Klein geometry with kernel K/K,. I:;

The reader may be wondering why all this fuss about ineffective Klein
geometries. Proposition 3.1 seems to indicate that if we are interested in
the geometry of the coset space G/H we need only consider the effective
case. Why not define Klein geometries to be effective? The first point is
that doing this would eliminate the subtle phenomenon of spin. While we
do not deal with this notion in this book, we can keep it within the scope of

'What tl}ey show is that a path-connected subgroup of a Lie group is a Lie
§ubgr0up. Since we allow uncountably many components for our manifolds, this
is fznough to ensure that any subgroup of a Lie group is a Lie subgroup. ’

) Note that the Euclidean plane and the affine plane have the same space (i.e
R*) even though the geometries are distinct. o
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. Klein Geometries 153
our definition by allowing our Klein geometries to be merely locally effective Thus, j induces a diff .
- eomorph
rather than demanding effectiveness. We may say that the geometrically phism Ge/Ho — G/H.
important cases of Klein geometries are the locally effective ones. The sec-
ond point to be made is that ineffective geometries, even ones that are
not locally effective, do turn up, 0 we might as well have a language that

E)tc)ermse 1;:.6. Let (G, H) be a pair of Lie groups, where H is a closed
subgroup of G. Let G, be the identity component of G, and set Hy = HNG
e

allows us to speak of them. For example, of the planar geometries given in (i) Show that the set of products G. - H = {gh € G .

§1, only four were given with an effective description (Euclidean geometry, a subgroup of G. ‘ g |g€Ge, h€ H}is
hyperbolic geometry, geometry of similarity, and Lorentz geometry). We (ii) Sh h . .

could have done this for the others, too, but then we would have had to ow that the inclusion G, C G induces a smooth inclusion G/Ho C

G/H whose image is a component of G/H. Q

describe the kernels.

The space G/H of a geometrically oriented Klein geometry need not be
topologically orientable in the sense of Definition 1.1.9. For example, the We 'remark that the bundle Hy — G, — G./Hp is an example of
effective version of the real projective plane has connected principal group reduction of the bundle H — G — G/H. ‘ ampie of a

G = PSI3(R) and so is geometrically oriented, but the projective plane is

not topologically orientable. On the other hand, consider the subgeometry Lie-Theoreti .
J c P i ;
(G, H) of the geometry of similarity, where H is generated by S0,(R) and ] roperties of Klein Geometries
the dilation e Ast .mo‘;\;)atilon for the bundle definition of Cartan geometries given in Defi
- nition 5.3.1, we draw the reader’s attenti : o
v - 20 to a Klein geometry (G, H): ention to the following data associated
and G = H x R? (semidirect product). The space here is R?, which is (a) the smooth manifold M = G/H;
topologically orientable, but since G has infinitely many components the =G/H;
Klein geometry (G/H) is not geometrically orientable. Note that G acts (b) the principal H bundle H C G — G/H,

on the space R? by transformations preserving the topological orientation.

The real meaning of the notion of a geometrically oriented geometry will
become clear only in §4 of Chapter 5 when we extend the definition to
include Cartan geometries.

(c) the Maurer-Cartan form wg:T(G) — g satisfying

(i) wg is a linear isomorphism on each fiber
)

The following result shows that every Klein geometry (G, H) determines (11) Riwg = Ad(h™)wg for all h € H (Proposition 3.4.2, part c)'?
a geometrically oriented geometry with the same space but with a possibly (iii) we(X1) = X for all X € b (cf. Exercise 3.2.15 )
smaller principal group. The ge 1 .2.15).
neral usage in modern literature is to use the
term h
Proposition 3.5. Let (G, H ) be a pair of Lie groups, where H is a closed space for the coset space G/H, where nothing is assumed abgzbto‘iizeiys
subgroup of G, and suppose that G/H is connected. Let G, be the identity ?OUPS H C Q, except that H is closed in G (cf. e.g., [M Go]ubitskl’e
component of G, and set Ho = HNGe. Then 972]). Older literature uses the term Klein space. T b
(1) G=Ge- H7

Geometrical Isomorphi ;
1S
(i) G/H = Ge/Ho. Definition 3.7 phism and Mutation
efinition 3.7. Klein geometries (G1, H1)

. . L. y 411 and G ,H -
Proof. (i) It suffices to show that G C Ge - H. Let g € G. Since G/H is t737}llet7'zcallg,/ isomorphic if there is a Lie group isomofplfist(’)O;aé? fllgd Sgeoh
connected, there is a path in G/H joining gH € G/H toeH € G/H. Since at p(Hy) = H. 2 u(‘:%
the map G — G/H is a bundle, we can lift this path to a path joining I cioul
g € G to some element h € H.Thus, gh~! € Geand g = (gh~)h € Ge-H. ‘i particuiar, the pairs (G, H) and (G, gHg™!) are geometrically i

(ii) By (i) the map j: G, — G/ H is surjective. Suppose g1, 92 € Ge. Then phic. A useful generalization of isomorphism is the ngtion ofr ly(jut}(;;is;;n o
-1 .
g5 g1 € Ge and _

13
| | i Actually, this is true for all i i
. oo i 191 . orinaion badle or all h € G, but Ry, arises from right H action on the
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Definition 3.8. Klein geometries (G1,Hy) and (Go, Hp) are mutants (of
each other) if there is an isomorphism of Lie groups ¢: H, — Hj such
that the induced algebra isomorphism @.e:h1 — b2 extends to a linear
isomorphism A: g1 — g2, which is an H module map (i.e., a map satisfying
A(Ad(h)v) = Ad(¢(h))(A\(v)))- The pair (¢, ) is called a mutation from
(Gl,Hl) to (Gz,Hz). *®

Exercise 3.9. Show that (Euca(R), SO, (R)), (SOn41(R), S0, (R)), and
(Ln1(R), SOx(R)) are all mutants of each other. (They are Euclidean
space R", elliptic space S™, and hyperbolic space H™, respectively.) a

Locally Klein Geometries

Here is a generalization of the notion of a Klein geometry.

Definition 3.10. Let (G, H) be a homogeneous space, and let rcdag
be a discrete subgroup such that T acts effectively by left multiplication
as a group of covering transformations on the space G /H with T'\ G/H
connected. Then the triple (T,G,H) is called a locally Klein geometry. It
is called geometrically oriented if G is connected. The double coset space
I'\ G/H is called the space of the locally Klein geometry or, by abuse of
notation, merely a locally Klein geometry. *

In the case that T' is the identity, this reduces to the Klein geometry
(G,H).

Note that in the definition of a locally Klein geometry (I, G, H) it is not
assumed that (G, H) is a Klein geomtery, that is, it is not assumed that
G/H is connected. A consequence of the following exercise is that we can
always replace (I', G, H ) by a locally Klein geometry (Lo, Go, H ) with the
same space, and for which (Go, H) is a Klein geometry.

Exercise 3.11. Suppose that (T',G,H) is a locally Klein geometry. Set
Go = Ge - H, where G, is the identity component of G, and Ty =GoNT.
Show that Gy is a Lie group, Go/H is connected, and the inclusion GoCG
induces a diffeomorphism ¢:To \ Go — '\ G. a

Just as in the case of Klein geometries, locally Klein geometries also have
an associated principal bundle. This fact depends on the following lemma.

Lemma 3.12. Let T’ and H be Lie groups with free commuting left and
right proper actions (respectively) on the smooth manifold X. Then

T\ X)xH—-T\Xis proper & T x (X/H) = X/H is proper.

Proof. By symmetry it suffices to prove only the implication =.
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Step 1. The action
CxH)xX— X
((g,h),x) — gzh™!

is proper.

Let A, B C X be compact, and let C = {(g,h) €T x H | gAhN B # 0}
We must show that C is compact. It suffices to show it is sequentiall'
compact. y

Le.zt (gi,hi) ETxH,i=1,2,... be asequence in C. Let A’ and B’ denote
the images (which are compact) of A and B, respectively, in T'\ X. Since
(I'\X)x H — '\ X is a proper action, the set C' = {h € H | A'hA B’ #0}
is compact. Moreover it is clear that h; € C’, i = 1,2,.... Hence {h;}
has a convergent subsequence. Replacing (g;,h;) € C, = 1,2,... by tllle
corresponding subsequence, we may assume that T

Since (gi,f%i) € C we may choose points a; € A and b; € B such that
giaih; = b, i = 1,2,.... Since A and B are compact {a;} and {b;} have
convergent subsequences. Replacing (g;,h;) € C, i = 1,2,... by ; corre-
sponding subsequence, we obtain, in addition to (i), o

(ll) llm a; = Qoo [ A
(iii) limb; = b € B.

. Now le.t K C X be a compact neighborhood of aschoo s0 that a;h; € K
i> N. Since I' x X — X is a proper action, the set ,

C"={geT |gKkN{b} #0} ={g €T | g7 'b € K}

is compact. Now limgi_lboo = limg; 'b; = lima;h; =
97 oo € K, i > M and hence g; %” N e vergont
A , 12> ceg; € C",i > M. Thus {g;} has a convergent

subs.equ'e‘:nce, and we may pass to this subsequence to obtain, in addition
to (i), (ii), and (iii):

(iv) img; = goo €T’

It follows that the original sequence (g;,h;) € T' x H, i =1,2,... has a
convergent subsequence, and hence C is sequentially compact.

Step 2. The action T' x (X/H) — X/H is proper.

 Let A, B C X/H be compact. We must show that {g € ' | gAN B # 0}
is compact. If we write A = J;<;<, Ai» B = Uy< <, Bj, with A; and B;
compact, then it suffices to show that {g € T | gx_ﬁlji_ﬂ B; # 0} is Zcorn ac]t
for all ¢,5. Thus it suffices to assume that A and B aie small sets ?ie

subordinate to some open covering of X/H). Now, by Theorem 2.4 t.h.é
map X — X/H is a principal H bundle, so there is an open cove;ix’lg of
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X/H such that over each open set of this cover the bundle X — X/H is
trivial. We assume that A and B are subordinate to this cover.

Applying a local section to A and B, we can obtain compact sets A’
and B’ in X with images A and B in X/H. Thus, {(¢,h) € T x H |
gA’h~' N B’ # @} is compact. Therefore, the image of this set under the
canonical projection I' x H — T’ is also compact; but this image is clearly
{geT|gANB #0}. | |

Corollary 3.13. Let (T',G, H) be a locally Klein geometry. Then the map
I'\G — '\ G/H is a principal H bundle.

Proof. Apply Lemma 3.12, taking X = G, and use the left and right
multiplication actions of I' and H, respectively, on G. Since I' and H are
closed subgroups, these actions are proper. Since (T, G, H) is locally Klein,
it follows that the action T’ x (G/H) — G/H is free and proper. So by the
lemma, (I'\G) x H — I'\ G is also free and proper. The result then follows
from Theorem 2.4. |

We remark that, according to Exercise 3.11, the principal bundle '\G —
'\ G/H is the same as the principal bundle To\ Go — Lo\ Go/H.

Example 3.14. Consider the case of the hyperbolic plane M = Slx(R)/
SO2(R). It is known that any closed, orientable surface M, of genus g > 1
can appear as the quotient I'\ M for some choice of ' C Slz(R). Let Iy
be such a subgroup. Then the quotient My = Iy \ M is a locally Klein
geometry in the sense of the definition above. L 4

We note that if (I',G, H) is a locally Klein geometry, then the Maurer—
Cartan form wg: T(G) — g, because of its left invariance, induces a form
wna:TT'\G) = g

Exercise 3.15. Show that the form wr\¢ has properties analogous to those
of the Maurer-Cartan form given on page 153. a

Lie Algebras of a Klein Geometry

For each Klein geometry (G, H), we have the corresponding pair of Lie
algebras (g,b). If (G, H) is effective, then b contains no nontrivial ideal of
g (cf. Exercise 3.4.7).

Definition 3.16. An infinitesimal Klein geometry, or more briefly, a Klein
pair, is a pair of Lie algebras (g, h) where b is a subalgebra of g. The kernel
t of (g,b) is the largest ideal of g contained in b. If € = 0, we say the pair
(g,b) is effective. If there is an h-module decomposition g = bh @ p, we say
(g,b) is reductive. *®
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Let us consider the correspondence

{Klein geometries} — {Klein pairs}.
(G,H) — (9,h)

This correspondence is not surjective, since Remark 3.8.10 gives an ex-
ample of an effective Klein pair (g,h) for which h cannot be realized as a
closed subgroup in any realization of g. We could define the closure of b of
b to b.e the Lie algebra of the closure of the realization of b in the connected
and simply connected realization of g. Then it is clear that the image of
the correspondence consists of the Klein pairs (g, §) where b is closed (i-e.

h="h) Itis easy.to see that the Lie algebra € of the kernel K of a Klein
geometry (G, H) is the kernel of the associated Klein pair (g, §).

Exercise 3.17. Let (g,b) be an effective Klein pair with b closed.
(a) Show that every realization is locally effective.

(b) Show that there is an effective realization.

(c) Study the relationship among the collection of all realizations of (g,h).
Q

One-Dimensional Effective Geometries

It is a remarkable fact that the real lin
i . e supports exactly th i
Klein geometries. These are as follows. y three effective

Definition 3.18. (i) The Eucli ine i : . .
(R,0). (i) The Euclidean line is (R, 0) with Klein pair (g,h) =

(ii) The affine line is (Aff{(R),GIlF . . .
(affs (B). ot () whir;S (Aff{ (R),GIf (R)), with Klein pair (g,h) =

Afff(R) = {(i 2) ceR,deR+}, Gl (R) = {(é 2)

afff(R)z{(S g)ceR,dem},gq(R):{(g g)ldeRJf}.

(iii) The universal cover of the s ntine Timo e (€3 FTY
projective line is (G, H ; :
(g) b)7 where ( ) with Klein pair

deR+},

G = Si5(R) = the universal cover of G = Six,(R),

H = the identity component of the inverse image in G of H C G,

n={(% 3

and where

deR*,beR}.
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The Lie algebras of G and H (and of G and H) are
—d b (et bdeR}. ®
o= {( peacnpo={(S" )P

The proof of this depends on the following classification of Klein pairs.

iti ive Klein pair with dim g/h =
Proposition 3.19. Let (g,h) be an effective ‘ : g/h
1. T‘I)Len (g,b) is isomorphic to one of the three Klein pairs described in

Definition 3.18.

i ]
Proof. See Appendix C.
We use this proposition to prove the following slightly more general result
than that stated at the start of this subsection.

Proposition 3.20.
(i) There are ezactly three isomorphism classes of ejj‘ectiv_e Klein ge-
ometries on the real line: the Euclidean line, the affine line, and the
universal cover of the real projective line.

(ii) There are two families of isomorphism classes of effective Klein ge-
ometries on the circle.

(a) One is the family of Buclidean circles (R/(1Z),0) with tfie §arge
Klein pair as the Euclidean line. The parameter | € R™ 1is the
length of the circle. |

(b) The other is the family of finite covers of .the projectivfz lz_ne
(PSlz(R)("), H™) with the same Klein pair as the projective
line. The parameter n € Z* (the degree) indezes the subgroup

nZ = i (PSh(R)) C m(PSk(R)) = Z

n )
determining the covering PSIL,(R)™ — PSlg(R), and H('.‘
is the component of the identity of the preimage of H in

PSl,(R)™.

Proof. Suppose (G, H) is a one-dimensional effective Klein geometrl}‘rdwith
Klein pair (g, ). Then by Proposition 3.19, (g,h) must be the Euclidean,
jecti lein pair. .
afﬁFr‘liEr}’stO;sI;ﬁgictll::tI?g, h) p: (R,0). Then the universal cover of Gis R;in
particular, G is abelian, and so H is a normal subgroup. Since tl.le geqmetry
is effective, H = 0. The preimage of H in the universal cover is a dls?;e;;e
subgroup that must then take the form [Z C R Thus G = R/(IZ). This
is the real line if I = 0 and is the circle otherwise.
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Next assume that (g,bh) is the affine Klein pair. Then g is realized by
the connected and simply connected group Afff(R). As a simple calcu-
lation shows, Aff1(R) has no center and hence Aff{(R) is the unique
realization of g. Now h C g has Gl (R) as its unique connected realization
in Aff{ (R). Another simple calculation shows that GIf (R) is a maximal
subgroup in Aff{(R) and hence H = GIf (R). Thus (G, H) = (AffT (R),
Gl (R)). In particular, G/H = R. Thus, there are no affine Klein geome-
tries on the circle and just one on the line.

Finally, assume that (g, ) is the projective Klein pair. Then g is realized
by the connected and simply connected universal cover of Slz(R) denoted
by Slz(R). In fact, the projection Slo(R) — Sl(R)/{£I} = PSiZ(R)
is a 2-fold covering so that the composite Siy(R) — Sl(R) — PSily(R)
displays Sl2(R) as the universal cover of PSI3(R). Now the kernel of the
covering homomorphism Si3(R) — PSI2(R)) is m1(PSIl2(R)) = Z and is a
central subgroup. On the other hand, PSIl>(R) has no center, and so Z is
the whole center of Slz(R). Now if G is an arbitrary connected realization
of g, there is a covering homomorphism p: G — PSIl>(R) determined by
the subgroup p,m(G) = nZ C m(PSI2(R)) = Z, that is, by the integer
n. Thus, we may write G = PSl(R)™. Since the pair (G, H) is effective,
H N center(G) = {e}. Thus, H is isomorphic to its image Hy in PSly(R),
and hence Hy contains the connected subgroup of PSi;(R) with Lie algebra
. This latter subgroup is isomorphic to the image of

=t b .
0 4)[PER, dERTE CSh(R).

under the projection map Siz;(R) — PSI3(R).

However, a third simple calculation shows that this subgroup is a maxi-
mal subgroup of Sl3(R). Thus, it is isomorphic under the projection map
to Hy C PSIl3(R). In fact, since Hy is connected and simply connected,
there is a canonical homomorphism Hy C PSly(R)™ lifting the inclusion
for each n and hence we have the following diagram.

Hyc PSLR) >R
=] l d

Hyc PSL(R)"™s §'
=] d 1 n-fold cover
Hyc PSL(R) — §'

From this it follows that there is just one isomorphism class of projective

geometries on the real line, while for the circle there is one for each positive
integer. u

Exercise 3.21. Verify the three “simple calculations” referred to in the
previous proof. o
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Exercise 3.22. (a) Show that the Euclidean circles (Definition 3.18(ii),
part a) are isomorphic as Klein geometries if and only if they have the

same length.
(b) Show that two projective circles (Definition 3.18(ii), part b) are iso-

morphic as Klein geometries if and only if they have the same degree n.
a

Exercise 3.23. Show that the geometries in Definition 3.18(i) and (ii) are
reductive but that in 3.18(iii) is not reductive. a

§4. A Fundamental Property

In this section we prove a basic technical result about the connection be-
tween a Klein geometry and its associated infinitesimal geometry.

Theorem 4.1. Let (G, H) be a Klein geometry with kernel K and associ-
ated Klein pair (g,h) with kernel €. Then K = {h € H| Ad(h)v—v €t for
allv € g}

Corollary 4.2 (Fundamental property of effective Klein geometries). If
(G, H) is an effective Klein geometry, N is a subgroup of H, and n is the
Lie algebra of N, then

N={h€H|Ad(h)v—venforallve;l}=>N={e}.

Our proof of this result and its corollary depend on the following two
lemmas.

Lemma 4.3. Letn C h C g be Lie algebras and N C H Lie groups realizing
the inclusion n C . Assume N is normal in H, and let

N ={he H|Ad(hjv—veEn for all v € g}.
Then N' is also a normal subgroup of H.

Proof. (i) Clearly e € N'.

(i) Next, @ € N’ = Ad(e)v —v € n for allv € g =v—Adle)v €
Ad(eY)n, for all v € g; but N is normal in H. Thus Ad(e~!)n C n. Hence
a"leN.

(ii)

a,B € N' = Ad(af)v — v = Ad(a)(Ad(B)v — v) + (Ad(a)v —v)
€ Ad(a)n+n=nforallveg.

Hence a3 € N’. Thus N’ is a group. Finally, we verify it is normal in H.
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(iv)

a € N h€ H= Ad(h~*ah)v —v = Ad(h~1){Ad(a)(Ad(h)v) — (Ad(h)v)}
€ AdlhY)n=nforalveg. (]

Lemma 4.4. Let ) C g be an embedding of Lie algebras and H realize §.
Define a sequence of subgroups of H inductively by
No=H,
Ny ={h e H|Ad(h)v—v € ng for all v € g},
where ng = Lie algebra of Ny = b,
Ny ={he€ H| Ad(h)v —v € ny for allv € g},
where ny = Lie algebra of N1,

Ny ={h € H| Ad(h)v —v € ng_; for all v € g},
where ng_1 = Lie algebra of Ni_;.

Th;n Ny D ].Vl DNy D...D N D...are all Lie groups that are closed
and normal in H am?, after finitely many steps, the sequence stabilizes at
a group Ny, whose Lie algebra ny is an ideal in g and satisfies

Noo ={h € H | Ad(h)v — v € ny for all v € g}.

Pro_of. Apply.ing Lemma 4.3 inductively, we see that each of the groups
Ny is normal in H. Also, if we assume N; D N;4; (which holds for j = 0)
then n; D n;41, so that ,

n € Njyo = Ad(n)v—ven;y forallveg
= Ad(n)Jv—ven;forallveg
= n € Nj;1, and hence Nj;; D Njio.

Now set Noo = NNj. Since each is N; normal in H, so is No,. We note
that the sequence of Lie algebras n; and hence also the identity components
of .the Njs form a decreasing sequence which must become constant after
finitely many steps. It follows from their definition that the N;s themselves

must also stabilize in the same finite number .
i of steps, and so N, i
a Lie group. Clearly ps, ~ is again

Ny ={h € H|Ad(h)v —v € ny for all v € g}. [ ]

Corollary 4.5. Let H be a closed subgroup of G realizing the inclusion

hCag. Agsume that G is connected. Then in addition to the result of Lemma
4.4, Ny is normal in G.
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Proof. We continue from the end of the proof of Lemma 4.4. Writing the
condition

Ny ={h € H|Ad(h)v —v € Ny for all v € g}

infinitesimally, we see the Lie algebra ne of Neo satisfies {n.,g} C g, so
that ng, is an ideal of g. By Exercise 3.4.7 the identity component of N
is a normal subgroup of G. For n € Nu, we have

Ad(n)(Ad(g)v) — Ad(g)v € foo,
so that
Ad(g—lng)v—'u = Ad(g‘l){Ad(n) (Ad(g)v)—Ad(g)v} € Ad(g_l)nmJ = Noo.

(The latter equality comes from the fact that the identity component of
N, is already known to be normal in G.) Thus, g Ing € Noo. It follows
that N itself is normal in G. |

Proof of Theorem 4.1. It suffices to show that K = N,.. The inclusion
K S N, follows from the maximality of K (cf. Definition 3.2). We need
to show that K C N.o. The fact that K C No = H is automatic. Let us
assume inductively that K C Nj. Thus ¢ C n;. Now the fact that K is
normal in G implies, by Exercise 3.4.7, that ad(k)Jv —v € ¢ forall k € K
and for all v € g. Thus,

KC{heHlad(h)v—veEforallvEg}
c{heH|ad(hjv—v€n;foralve g} = Njt1.
It follows by induction that K C Noo, and hence K = N |
Proof of Corollary 4.2. The second half of the preceding argument shows

that any subgroup N satisfying the condition N C {he H|ad(hjv—vEn
for all v € g} lies in Noo. But Noo = 1, since it is a normal subgroup of G

lying in H. |

§5. The Tangent Bundle of a Klein Geometry

Let us consider a bundle chart (U,%) for the principal H bundle 7: G —
G/H. Thus we have the diffeomorphism ¢: UxH — 7~ }(U) C G. Clearly,
this yields a commutative diagram.

1 W* Tyx X THx
T(n (V) ¢= T(U X H) >T(U) X T(H)

k\ lm%ojl

)
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The top .rig}}t—hand diffeomorphism is the one described in Exercise 1.4.15.
From this diagram it follows that, if z = 7(g), the diagram

LGH) —2 5 g
! N

Wg
L(G) ——— 8

l l

L(GIH) —2%—s g/t

is comrn'u‘m';mtive,14 with exact columns. Since § is only a subalgebra of g
(not an ideal), the quotient space g/h is merely a vector space (not a Lie
algebra). The linear isomorphism (g is the unique map making the diagram
comimute.

W.e can identify the tangent space of G/H at = with g/b, but the identi-
fication ¢4 depends on the choice of g € G over z. In fact,,since TRy =7
the relation Rjwy = Ad(h) 'wy implies that ¢, = Ad(h) l¢,. It follows
that the identification of T,;(G/H) with g/b is determined onlgf up to the

adjoint a'ct?on of H on g/h. This fact accounts for the frequent occurrence
of the adjoint action in the sequel.

Proposition 5.1. T(G/H) ~ G xy g/h (as vector bundles over G/H).

Proof. Define a map ©:G xg— T(G/H) by (g x v) = (m(g), T« Lguv),
?vhgre m QG - G/H is the canonical projection. Clearly, ¢ is smooth, sur-
Jective, and linear for fixed g. Moreover, for v € T.(H), Ly-v € T,(gH) €

ker m,. Thus, ¢(g x v) = (g,0). There is al
er ) so another fact about . We

¢(gh, Ad(h™")v) = (m(gh), me Lon Ad(h™*)v) = (m(9), Tu (Lyhs L1, Rav))
= (7(9), Lgumu(Rnuv)) = (m(g), Lgu(mRp).v)
=(

7(9), Lgx (T (v)) = ©(g,v).

Thus, ¢ indpces a smooth quotient mapping ¢:G xy g/h — T(G/H).
Moreover, this map is injective since p(gxv) = (g’ xv') implies g’ = gh for
some h € H and m, Lgp,v" = m,Lg,v. The latter means that m, Ly.v' = 7,0
and hence that v’ — Ad(h~Yv € h. Thus, '

14 .
Of course, the top map is not really wy except in the case when g € H.

Howevei,Hfor any choice of gh € gH, the composite T,(gH) L(gh—):l* Th(hH) =
Tw(H) — b is the same, so we may sensibly denote this map by wh.
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¢ x v = gh x Ad(h"")v(mod h) = g x v in G x 8/h.

Thus, @ is a vector bundle map covering the identity on the base G/H,
which is linear on fibers. |

This proposition gives an identification of each tangent space T,(G/H)
with g/h. This identification is canonical up to the adjoint action of H
on g/h. Since tangential information involves only derivatives of the first
order, we can make the following rough division of Klein geometries into
two types according to whether or not H is faithfully represented by the
adjoint action on the tangent space.

Definition 5.2. A Klein geometry G/H is of first order if the representa-
tion Adgp: H — Gl(g/ h) is faithful (ie., injective). Otherwise, the geome-
try is said to have higher order. *®

As one may see in Appendix C, the classification of primitive effective
pairs (g,f) breaks into two cases of quite different nature depending on
whether or not adgy:h — Gl(g/b) is injective.

§6. The Meteor Tracking Problem

In order to motivate the need for the notion of a gauge, we begin by de-
scribing the meteor tracking problem in a Klein geometry M=G/H.
Suppose we live in a small open set U C M and a meteor flashes through
U. We wish to describe the motion of the meteor. We assume the meteor is
rigid and sufficiently complicated. By the term rigid in the given geometry,
we mean that for any two of its positions, where it has the conﬁgurations15
X, and X say, there is an element of G carrying Xo to X1. By sufficiently
complicated we mean that the subgroup of G that fixes the body pointwise
(its stabilizer) is the identity. It follows that if X (t) is the configuration
of its points at time ¢, then there is a unique path g(t) in G, the group of
“rigid motions” for X, such that X (t) = g(t)X (0). One way to describe the
motion would be to specify the path g(t) itself. However, it is more useful
for us, and closer to what is actually observed, to describe the motion
differently. We first describe the motion of one of its points ¢ € X(0),
which we take to be eH, by a path g(t) = g(t)H on U, and then describe
the motion of the rest of the body as turning about this one point as it
moves along. To describe this turning, we need the notion of a gauge.

151f the “abstract” meteor is the point set X, then a configuration Xo of these
points in M is a map Xo: X — M. This is what Cartan originally had in mind
when using the term “moving frame.”
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What Is a Gauge?

The following figure depicts the anatomy of a generic gauge.!6

Something fixed,
but arbitrary

(the choice of gauge) \f\z 3 4
1 /({\/\5
MWW

Something moving
(what we wish to measure)

We(: see that this structure consists of two parts:
1) a part that is fixed but arbi i
of v arbitrary, the numbered marks (the “choice

h(2f3 a part that is moving and that we wish to measure by comparison to
the ?<ed part. In our example of the meteor tracking problem, the moving
part is the meteor itself. What is the fixed part? ,

Let I115 assume that the open set U is small enough so that there is a

smooth section o:U — G. Of course, once there is one o there will be

many others also, and if o; and o i
! ) 2 are two such sectio i
differ by a map h:U — H, namely, re, then they will

GQ(U) =01 (u)h(u)

The “choice of gauge” is merely a choice of one of these sections. The section
is the gauge and the relation between oy and oy above is called a gauge
trangformation. A choice of gauge can be regarded as a choice of mo%iongs
varying smoothly with «, which maps the base point to u. The value of a;
Ig;m;lgi jt aﬁpé)int may be called a frame at that point and the gauge itself
c : Lo .
i i G/ Iz} ieS aa l::zlgzzlzgoj;nfzggelz.rom this point of view the principal bundle
N Now let us see how we may use the gauge o: U — G to track the meteor
kl(;lce blcl)rth cr(q(t?) and g(t) lie over ¢(t), they must differ by an element.
; ) E . Thus, in the presence of a gauge, the motion may be described
y giving q(t) and k(t). The latter describes the way the meteor turns

16 . .
o t}Eermann }Neyl’§ original use of the term gauge was in the restricted sense
gauge of a railway track and refers to a scale factor. This appears as the

special case H = R™. It is a ha i
™. ppy accident of language that th
has the more generic interpretation given here. siee © term gauge also
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about the point g(t). We emphasize that there is no intrinsic geometric
meaning attached to the choice of gauge, or indeed to the function k(t)
alone. Together, however, they complete the description of the motion of
the meteor.

§7. The Gauge View of Klein Geometries

In this section we are going to formulate various aspects of the Klein geom-
etry M = G/H from the gauge point of view. These remarks will serve as
the motivation for the base definition of Cartan geometries given in §1 of
the next chapter, which studies Cartan’s generalization of Klein geometries.

Gauge Picture of Bundle Charts

Fix a bundle coordinate chart (U,v) for the principal H bundle m:G —
G/H. Thus we have the diffeomorphism ¢:U x H — 7~ 1(U). Note that,
since such a chart is by definition right H equivariant, specifying ¥ is
equivalent to specifying a section o over U. More precisely, setting o(u) =
¥(u,€), we have ¥(u, h) = o(w)h.

Let us study the coordinate change resulting from a change of sections
over U. Suppose that o1 and o are two sections of G — G/H over U. Thus,
there is a unique smooth map k: U — H such that o2(u) = 01 (u)k(u) for
w € U. If ¢ and 92 are the corresponding trivializations of 7~ (U), we
have the diagram

Ux HY ol(U) <EUxH

(u,h) al(u)hzag(u)ﬂ i (u,fl)

It follows that ¥5 ‘1 (u,h) = (u, oo(u) " tor(w)h) = (u, k(u)~*h). Thus, it
is possible to reconstruct the bundle G — G/H if we are given only the
transition functions (or gauge transformations) k:U — H.

Gauge Picture of Maurer—Cartan Form

Let us consider now the shape taken by the Maurer-Cartan form on a
coordinate chart given by a section o of G — G/H over an open set U.
The coordinate chart corresponding to o is

p:UxH— 71 (U).
(u,h) Rpo(u)

We calculate ¥* (wa)-

Proposition 7.1. The following diagram commutes, where

o(v,y) = Ad(h) " 'we (v) +wr ().
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Toun(U X H)

*"‘wa
/'g
()

L) x Ti(H)

Tysx X Tpx

P R i i
roof. By Exercise 1.4.15, the vertical map is an isomorphism with inverse

Tu(U) X Th(H) - T(u,h)(U X H),
('v,y) s ih*(v)"’ju*(y)

WhQYEihiU—’UXHsendsx_,( .
. z,h) and j,: H
Thus it suffices to verify the commut)ativit]y of — UxH sends k — (u, k).

Toum(U X H) Toum(U X H)
\V’*ﬂ)‘c , Y*wg
ih* g ju* \ g
L) o|T.(U) = Ad(F ) wg A;;:(H) =0y
Ti(H) = wg| Th(H)

For the first diagram, we have

(’l/)*wG) (o) ih* = (dlih)*wc = (Rha)*wc = U*RZWG
=0*(Ad(h Y wg) = Ad(h™o*wg,

and for the second we have
(V*wa) © Jux = (Yju)*'we = (Lo)) 'we = wa-

Infinitesimal Gauge

Let o:
0:U — G be a gauge, namely, a section of the principal bundle G —

G/H p .
G
over an open Set 1) m /11 IheIl g puHS back tlle IVla.llIer Caltall

o*(wg) = 0.

The structural equation for wg also pulls back to yield

1
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We note that not only does & determine 6 but the reverse is almost true as
well, since the fundamental theorem of calculus says that 6 determines o up
to left multiplication by a fixed element of G. Indeed, for an effective Klein
geometry, if o is a section, then go is a section <> g = e.!” For this reason
we may refer to both o and 6 as gauges on M. If we wish to distinguish
them, we shall refer to 0 as an infinitesimal gauge. In fact, it will be the
infinitesimal form of the gauge that will be of the most use to us exactly
because it is “independent of the base point.” We may further note that
since o is a section, by the diagrams in §5 identifying (noncanonically) the
tangent space of G/H with g/h, the composite mapping

canonical

g’E‘(U') 0 p projection p /h

is an isomorphism for every u € U.

The infinitesimal gauge 6 can be roughly interpreted as assigning to each
tangent vector v € Tu(M ) the infinitesimal motion I + €f(v) € G (where
¢ is infinitesimal and we are thinking of G as a matrix group SO that the
addition makes sense) of M whose effect on u itself is to move it to u +€v.

By varying the trivialization v, or equivalently by varying the section o,
we change the infinitesimal gauge 6. We may see the variation explicitly in
the following way. Let o1 and o2 be two sections over U. Then, as we saw
above, there is a smooth map h: U — H such that o2(u) = 01 (u)h(u) for
w € U. According to the product rule (Proposition 3.4.10), differentiating
this formula yields

oiwe = Ad(h~Y)oiwa + hwn,
that is,
6, = Ad(h~ )01 + hwr.

More explicitly, if v € T (U), then fo(v) = Ad(h™1)01(v) + wi (ha(v)).

We call such a variation of the infinitesimal gauge ¢ an (inﬁm’tesimal)
change of gauge, and the two infinitesimal gauges are said to be (infinites-
imally) gauge equivalent. We denote this symbolically by

01 =n 02.

It is quite clear from the “integral” version of the gauge that this is an
equivalence relation, at least among gauges with a common domain of def-
inition.

171f go is also a section, then & = n(go(x)) and hence gz = forallz € U.
Thus f 'gf € H for all f € 7Y (U) C G. This shows that {f € G | flgf € H}
contains an open subset of G. But it is also an analytic subset of G, so it must
be equal to G, at least for G connected. Thus g € Nfec fHf —1 and this latter
is a normal subgroup of G in H and is therefore trivial.
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E . . Lo
xercise 7.2. Let &g be the right-invariant Maurer—Cartan form on G
bl

and set § = 0*We. Show that this (ri i i
! 0" OG- right) infinitesimal gauge t
according to 8, = 01 + Ad(o1)h*p, where 05 = g1 h. s ranSfom;

To prepare for later work wi i
tofioiirep with Cartan geometries, we make the following

Definition 7.3. A gau ;
0. ge symmetry :
map b: G — G such that ymmetry of a Klein geometry (G, H) is a smooth

(i) b(gh) =b(g)h for all h € H, and

(i) b(g) € gHg ! for all g € G. ®

Exel clse ; -4- ShOW tha.t a gauge y Illel/I y 1S |‘lSt a buIl le a 1() ()l})lllSIIl
g Sym

E .
xercise 7.5. Show that a gauge symmetry b: G — G determines and is

determined by a smooth :
deteny map f:G/H — G such that f(g) € gHg™! for all
0
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Shapes High Fantastical: Cartan
Geometries

In the wake of the movement of ideas which followed the gen-
eral theory of relativity, I was led to introduce the notion of new
geometries, more general than Riemannian geometry, and play-
ing with respect to the different Klein geometries the same role
as the Riemannian geometries play with respect to Euclidean
space. The wvast synthesis that I realized in this way depends
of course on the ideas of Klein formulated in his celebrated
Erlangen programme while at the same time going far beyond
it since it includes Riemannian geometry, which had formed a
completely isolated branch of geometry, within the compass of a
very general scheme in which the notion of group still plays a
fundamental role. -E. Cartan, 1939

The universe appears to be a nice mixture of homogeneity and nonho-
mogeneity. At almost any location and scale, one is likely to see nothing
(i.e., homogeneity) except for some concentrations (“lumps”) of something
at some great distance. If we move to the center of one of these concen-
trations, the nonhomogeneity may become more apparent; but if we then
change our scale, the nonhomogeneity disappears and we are left with vir-
tual homogeneity again. In a broad sense this is the fractal nature of the
universe. Human life on earth is quite exceptional in this regard. We appear
to be located at a position and scale where the nonhomogeneity is quite
manifest. Nevertheless, we have not been so completely drowned in nonho-
mogeneity that we were prevented from discovering Euclidean geometry, a
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totally homogeneous idealization of our circumstance. Until this century,
physics was regarded as the study of events in the amphitheater (as it were)
of Buclidean geometry.! The present century has seen the appearance of
“lumpy geometry” in physics, both in Einstein’s theory of general relativ-
ity as well as in the gauge theories of electromagnetism and of weak and
strong interactions. Here geometry sheds its passive appearance as back-
drop and assumes increasingly the role of actor. Indeed the question arises,
“Is geometry in its various forms the only actor?”

The new geometries in the quotation from Cartan at the head of this
chapter refer to his “espaces généralisés,” or what we are calling here “Car-
tan geometries.” If Klein geometries represent perfect homogeneity, then
Cartan geometries represent a perfect mizture of homogeneity and nonho-
mogeneity. Riemannian geometry (see Chapter 6) had its origins in 1854 in
Riemann’s celebrated talk.? It can be regarded as a nonhomogeneous ver-
sion of Euclidean space. Cartan’s generalization of Klein’s geometries do
for them what Riemann’s generalization does for Euclidean space, that is,
it adds “lumps.” If a geometric theory is going to be of any use in a seam-
less description of a nonhomogeneous universe, it had better be “lumpy.”
Physical gauge theories describe fermions (“particles”) as complex-valued
functions on a principal bundle over space-time, and bosons (“forces”) as
connections on this principal bundle (cf. [Y.I. Manin, 1989]). Thus, it may
become physically interesting to understand these notions in their proper
geometrical context.

Cartan geometries are modeled on, and named by, Klein geometries. For
example, we refer to a Cartan geometry modeled on Mobius geometry as
a Mobius geometry. This usage is justified, for instance, by the fact (cf.
Theorem 5.1) that if the Cartan geometry is flat, then it is locally the
same as the model space.

There are, in fact, two forms of Cartan geometries, the local form and
the global form.? The two forms are equivalent only when the model Klein
geometry is effective.*

Our first definition is of local character and is called the base definition.
Here the geometrical side is least apparent and analysis comes to the fore.
This appears to be the version most preferred by the physicists because of

1However, Gauss had his suspicions about the truth of this. After his discov-
ery of hyperbolic geometry, he realized that it could equally well serve as the
amphitheater of events. In his capacity as director of the project to survey the
Kingdom of Hanover, he was aware that the measurement of earthly triangles
would not settle the issue. This story is told in Chapter 9 of [W.K. Biihler, 1981].
It was Lobachevski’s proposal to attempt to settle the question experimentally
by studying stellar triangles.

2An English translation of this talk appears in [M. Spivak, 1975}, p. 135.

3See Appendix A for the relation to Ehresmann connections.

4 Although this is a very important case, it does not exhaust the interesting
possibilities. For example, spin geometries are based on ineffective models.
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the local and analytical character of measurement. The second definition
is global and is called the principal bundle definition. Roughly speaking, it
presents a Cartan geometry as “a deformation of a Lie group which ﬁ;(es
the cosets of a closed subgroup.”

In §1 we use the gauge idea to generalize the notion of a Klein geometry
(G, H) to that of the local version of “a Cartan geometry modeled on
(G, H).” We also introduce the curvature 2-form, which is a measure of the
failure of the structural equation. In §2 we see how, for effective geometries
a Cartan geometry determines a principal bundle and a Cartan connectio;z
on it. In §3 we give the global definition of a Cartan geometry in terms
of the data obtained in §2. At the same time this definition generalizes
the .Lie—theoretic properties of the Klein geometries given on page 153
Section 3 continues with the study of a number of concepts related t<;
C'artan geometry, including the tangent bundle, the curvature function
Bianchi identity, tensors, differentiation, and special geometries. Section 4,
introduces the notion of developing a curve in a Cartan geometry as a curve
in the model space. In the case of closed curves, this leads to the notion of
the holonomy group. This group is a subgroup of the group G of the model
In the case of a complete flat geometry, it is just the monodromy group. It ié
one measure of the failure of the geometry to be Klein. Also in this section
the notion of geometric orientation is generalized to Cartan geometries t(;
prepare the way for the classification in §5 of geometrically oriented locally
Klein geometries among Cartan geometries. In §6 we study the Cartan space
fom?ms, a class of geometries generalizing the Riemannian space forms. These
again turn out to be locally Klein, but the model may change. The ideas
in this section revolve around the notion of model mutation, which refers
to the possibility of altering the model Klein geometry on \;vhich a given
Cart'an geometry is modeled. It is a change that may alter the curvature
blllt in which there is no loss of information about the original geometry.
Finally, in the short §7, we apply the classification of Cartan space forms t(;

thedcaise of symmetric spaces. These latter can be defined for any reductive
model.

§1. The Base Definition of Cartan Geometries

In Chapter 4 we showed how a Klein geometry M gives rise to a gauge, or
rather an equivalence class of gauges, on each sufficiently small open ;et.
We are now going to generalize this notion to that of a geometry modeled
on a Klein geometry. But first there is the question of what data to take as
the model geometry. The apparently simplest way would be to use a Klein
geometry (G, H) itself as the model. This approach, however, would result
in later difficulties related to the fact that the influence of7the model is
essentially local. For this reason we take the following definition.
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Definition 1.1. A model geometry for a Cartan geometry consists of
(i) an effective® infinitesimal Klein geometry (g,),
(ii) a Lie group H realizing b,

(iii) a representation, denoted Ad: H — Glyie(g), extending Ady:H —
Glrie(h)-

The kernel K of the representation Ad: H — Gliie(g) is called the kernel of
the model geometry. If K is trivial, the model geometry is called effective.
A model geometry is called primitive is the subalgebra b is a maximal
subalgebra of g. It is called reductive if there is an H module decomposition
g=hop. *®

We note that the hypothesis of effectiveness in Definition 1.1(i) implies
that the kernel K is a discrete subgroup of H. It is clear that an effective
Klein geometry (G, H), or more generally a Klein geometry with discrete
kernel, canonically determines a model geometry. From now on we assume
that we have chosen once and for all a fixed model geometry.

Cartan Gauge

Definition 1.2. Consider a model geometry (g,h) with group H. A Cartan
gauge with this model on a smooth manifold M is a pair (U, 0y ), where U
is an open set of M and Oy (which we may abbreviate by ) is a g-valued
1-form on U satisfying the regularity condition that

canonical
projection
S

)
Y > g/

—
7

Oy:T.(U)

is a linear isomorphism for each u € U. (One usually assumes that U is a
coordinate neighborhood in M, although this is not strictly necessary.) ®

Definition 1.3. If M is a smooth manifold, then a Cartan atlas on M is
a collection 4 = {(Uq,0a)} of Cartan gauges with model (g, ) and group
H such that

(i) (Covering) the Uy’s form an open cover of M,

(ii) (Compatibility) if (U,0y), (V,0v) € 4, then there exists a smooth
map k:U NV — H such that® 8y = Ad(k~1)0y + k*wg on U N V.

5Tt is possible to omit the effectiveness condition here, but there seems to be
no gain in doing so.

6This equation is an abbreviation. It means that for each z € UNYV we have
(6v)z = Ad(k(z) ") (0v)z + (K")swn:
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(This compatibility relation is also called gauge equivalence.) &

Let us take a moment to study the compatibility relation between 8y and
fy. As in Fhe last chapter, we denote this relation by writing 8 ii 0
'I“‘I‘le following lemma is not unexpected since it is obvious for the ori invi
(“integral”) version of gauges given in the last chapter. -

Lemma 1.4. Suppose that (0;,U) are Cartan gauges for i =1,2,3. Then
(i) 61 =iq 01,
(11) 61 = 0, imph’es 0, k-1 01,
(iii) 01 =1 05 and 0 = 03 imply 01 =ni 03.
Proof. (i) is obvious.
(ii) 02 = Ad(k™1)01 + k*(wy) implies
= Ad(k) 02 — Ad(k)(k* (wr)).

Now by the quotient rule, Coroll *
N , Corollary 3.4.11, Ad(k)(k*(wr)) = —(k~Y)*wx,

01 = Ad(k)az + (k..l)*QJH, i.e., 02 = k-1 01.
(iii) 02 = Ad(h™1)0; + h*(wg) and 03 = Ad(k~1)0, + k*(wy) imply

03 = Ad(k™")(Ad(h™1)0, + h*(wr)) + k* (wg)
= Ad((hk)™1)8; + Ad(k"Y)h* (wr) + k* (wr).

Now by the product rule, Proposition 3.4.10, applied to the composite

USUxUgxH 2 H,
u = (u,u) g (h,k) — hk

we have
(hk)*wr = ((h X k)A)*u*wy
= ((h x k)A)*(rfAd(k™Ywgy + miwrr)
= (m(h x k)A)*Ad(k™Ywp + (ma(h x k)A)*wy
= Ad(k"Y)h*wy + k*wy
and so

05 = Ad(hk)™)0; + Ad(k~Y)h* (wir)) + k*(wir)
= Ad((hk)™1)0; + (hk)*wg.
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Exercise 1.5. Suppose that Ad: H — Gl(g/) is surjective. Let (U, 9) be
a Cartan gauge and let U — g/bh be any local coordinate system. Show
that each point p € U lies in a neighborhood V' C U such that the Cartan
gauge (V,0 | V) is gauge equivalent to a gauge (V,y) with ¢ = dz mod §.
a
Just as in the case of manifolds, bundles, and foliations, we call two
atlases equivalent if their union is also an atlas, and we note that there is
a unique maximal atlas equivalent to a given one.

Definition 1.6. A Cartan structure on & smooth manifold M consists of an
equivalence class of Cartan atlases on M. A Cartan geometry7 is a smooth
manifold M together with a specified Cartan structure. A Cartan geometry
is effective if the model is effective. *®

Definition 1.7. Let M and M- be two Cartan geometries with the same
model geometry. A diffeomorphism ¢: M1 — M, is called an isomorphism
of geometries (or a geometric isomorphism) if for any Cartan gauge (U,0u)
on M,, the gauge (oYU ), ©*0u) induced on M; is compatible with the
Cartan atlas on M. *®

Curvature

We note that in defining the notion of a Cartan geometry, we have not
mentioned the structural equation. This is not an oversight. Rather, it
constitutes Elie Cartan’s basic insight as the means for generalizing the
Klein geometries. In particular, for any Cartan gauge (U, 0v), the g-valued
9-form Oy = dfy + %[OU, 6y) on U need not vanish. As we shall presently
see, Oy is a measure of the nonhomogeneity—the lumpiness—of a Cartan

geometry.

Definition 1.8. The form Oy = diy + %[OU,GU] on U associated to a
Cartan gauge (0,U) is called the curvature with respect to this gauge. ®

Of course, like the gauge 0y, the curvature is not intrinsically defined.

Let us see how it transforms as we alter the gauge.

Lemma 1.9. Suppose that (0;,U) are Cartan gauges on U fori=1,2.

Then
6, =, 02 implies O, = Ad(h‘l)@l.

Proof. Calculating the exterior derivative of the equation

7Later in this chapter we shall give another definition (3.1, page 184) of a Car-
tan geometry equivalent to this one only in the effective case. The later definition

is the definitive one.
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62 = Ad(h™1)6; + h*wy,

we get, using the formula for d{Ad(h! i
0 Exerci
symmetry of the bracket on 1-forms (Exezcilsi 11I.15.2)({)((eiri(;1)Se B4 and the

1
62 = d02 + 5[023 02]

= Ad(h~Y)d6; — L[Ad(h1601, hrwn] — L[*
(h~1)d8, 2[Ad(h 61, h*wy] — 5[ wr,Ad(h™1)8,] + h*dwy

1
+ 5[Ad(R )61 + h*wy, Ad(R71)0) + hwy]

= Ad(h™?) {d01 + %[01,01]} + h* {de + %[UJH,WH]}

= Ad(h™! i .
(h™)©; since dwy + E[wy,w;{] =0

by the structural equation given in §3 of Chapter 3 |

A simple conse is i

quence of this is that the vanishi
. - - .. . Shln f i
intrinsic condition, independent of the choice of gasgz the curvature fs an

Deiillltloll 1.10- IA CaI ta'n. gGOIHEtIy Whose cur Vatule VanlSheS at GVEI})

The anal
alog for a Cartan geometry of the structural equation for a Lie

group is flatness. While the struc i
ural e i
not all Cartan geometries are flat. auation ahvays holds for a Lie group,

Example 1. i

o Klg Ny glecl,rte?}']e m(r}nplest examples of Cartan geometries are, of course

s Tein geome rtl(:as4 /H themselves equipped with the Cart,an gauges:

CoscrivedIn © pter . We showed there that these charts were all regul
patible. This is called the canonical Cartan geometry on G / Ig{u aOr

Example 1. i
o glzotin :UIZZT Ehe nlext s1'mples.t examples are the open subsets of a
© oin geomet; y.e . esle clearly }nherlt the structure of a Cartan geometry b
e Satisfy. thegM :;a , tléese will not l?e Klein geometries. Nevertheless they
Mo isty the Ma gert—KalLrFan equan;lon3 so they are flat Cartan geométriesy
coverns s,paces ha ha ein geometry is not simply connected, each of ité
e : ill have the structure of a Cartan geometry induced on i
e covering map. These geometries are again flat ) Onl’t

Exa
geomnelg;er} \lg/ Ehe final exa.mple we give now is the case of a locally Klein
, where T' is a subgroup of G that acts on G/H by left
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multiplication as a group of covering transformations. The transformations
in T act as geometric isomorphisms on G/H. Since the projection G/H —
I'\G/H is a covering map, it is a local diffeomorphism, and we can transport
the Cartan atlas from G/H to T'\ G /H. The result is a Cartan atlas on
I'\ G/H, and the covering projection is locally a geometric isomorphism.
In particular, the curvature on I'\ G/H that vanishes so it is a flat Cartan
geometry. 2

Since all of these examples are flat, the reader may well be wondering
if there are any nonflat examples. Of course, there are such examples. In
particular, in §6 we will study cases where the curvature is nonzero but, in a
certain sense, constant. More generally, it often happens that a submanifold
of a Klein geometry can be canonically equipped with the structure of a
Cartan geometry, and these are seldom flat. Examples of this are given in
Chapters 6 and 7.

Finally, we define the notion of a gauge symmetry of a Cartan atlas.

Definition 1.14. Suppose that A = {(Uarba) | € A} is 2 maximal atlas
for a Cartan geometry on the manifold M. A gauge symmetry of the Cartan
geometry is a permutation b: A — A such that

(i) Usga) = U and

(ii) b satisfies the compatibility condition: if Ua = Up and 0, =>n 03,
then gb(a) =h eb(ﬁ)- *®

The full meaning of this rather subtle notion of symmetry will become
evident only after we study, in §2, the principal bundle associated to a
Cartan geometry. In any case it is clear from its definition that a gauge
symmetry does not alter the geometry in any way.

§2. The Principal Bundle Hidden in a Cartan
Geometry

In the case of a Klein geometry M = G/H, there is a canonical principal
bundle n over M given by H — G — M with the property that the Cartan
gauges are all obtained by pulling back the Maurer—Cartan form on G via
sections of . It is natural to ask whether a similar bundle exists canonically
for any Cartan geometry. The answer is that it does, provided the model
geometry is effective, and in this section we describe it. The construction
depends on the fundamental property of Klein geometries given in §4 of
Chapter 4.

Proposition 2.1. Let U support @ Cartan geometry modeled on (g,h) with
group H. Let K be the kernel and let 0; (j = 1,2) be two compatible Cartan
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gauges on U . ‘The"n 6, =k 02 for a smooth function k:U — H that is unique
up to multzplzcatzqn with a smooth function I: U — K. In particular, if the
Cartan geometry is effective, then k is unique.’ ’

Proof. If k; and ks are two such ks, then by Lemma 1.4
0, =>k1k2—1 0.

Thus it suffices to show that 8 = 6 implies k takes values in K. That is
we must show that every solution k to the equation ,

6 = Ad(k~ )0 + k*wy, where k:U — H, (2.2)

;akes 'values in. K. Although this may look like a nasty problem in dif-
erential equations, it turns out that it can be solved by means of linear

algebra by using the fundamental i
: property of Klein geometries. Ri
we showed in Lemma 4.4.4 that the series of groups ol that

Ny = H, with Lie algebra ng =,

xl = {h € H | Ad(h)v — v € ng for all v € g}, with Lie algebra n,;
2 =

{h € H| Ad(h)v —v € ny for all v € g}, with Lie algebra ny

N = {he H|Ad(h)v —v € ng_; for all v € g}, with Lie algebra ny

%e all ]\%ie groups that are closed and normal in H. They satisfy Ny D
Stl D tz D ... D Ng D ..., and this chain stabilizes after finitely many
Neps at a group N whose Lie algebra n., is an ideal in g; moreover

o= {he H | Ad(h)v —v € no Vo € g} ’ ’

In the present case, since n,, C b, i
, , it follows (cf. Definiti i
N = 0. Thus, N, is discreteo;nd (et Definition 1.1(1) that

Noo ={he H|Ad(h)v—v =0 for allv € g}
=ker(Ad: H — Gl(g)) = K.

N We now show by induction that k takes its values in N, for s =0, 1
ince N9 = H, we see that k:U — N, for s = 0. Assume inductiveiy ’t}ia;é

k:U — N;.Fixu € U. Then E i
s . q. (2.2), rewritten as Ad(k~1)§—0 = —
says that for any v € 8(T,,(U)) we have o AETN020 = ok

Ad(k(u) ) — v € image(wrkww) C 1.

8 . .
We remark that this result is true even in cases where K is not discrete

hu.S, 1 appll S Yy
I t es to the more geneI al notion Of a CaI tan geOInetI Wlth ll]odel as
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But since N, is normal in H, by Exercise 3.4.7(c), the same conclusion also

holds if v € b.
By the regularity condition on 9,9 ="h+0(T.(U)), which implies

Ad(k(u)'l)v — v Eng

for every v € g. Thus, k(u) € Nsy1- But u was arbitrary here, so in fact
k:U — Ngy1. It follows that k:U — N =K. |

The Principal Bundle of an Effective Cartan Geometry

Now we are ready to pass to a description of the principal H bundle asso-
ciated to an effective Cartan geometry. Let U = {U} be a cover of M by
sufficiently small, connected open sets (i.e., so that each is contained in the
domain of a Cartan gauge and the intersection of any two of them is con-
nected). The principal bundle we seek is obtained by glueing together the
products U x H for all U € 1. For each U € U, we choose a representative
connection 1-form . Now if Uy, U, € U have corresponding forms 04, 02,
then along U3 NU there is a gauge equivalence 6 = 02 given, according to
Proposition 2.1, by a uniquely determined smooth map k:U,NU; — H. We
can glue Uy x H to Uz X H along the common (U1 N U;) x H by making the
identification (u, h) < (u, k(u)~'h) asin Figure 2.2. It is easily checked that
these identifications are compatible along the intersections of three open
sets, so they fit together to give a right principal H bundle P. Of course,
the right action of H in a coordinate patch is just right multiplication on

the second factor, which clearly commutes with the identification maps.

U xH Uy xH

(u, h)

(u, k()" h)

FIGURE 2.2.
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By this construction, an effective Cartan i i
' cor geometry uniquely deter
right principal H bundle 7: P — M. o e

Right Multiplication and Ad

As we know, each vector v € § uniquely determines a left-invariant vector
field V on the Lie group H whose value at e is v. Such a vector field extends
over U x H as v! = (0,V). Because the field V is left invariant and the
bundle P is made up of identification maps that alter the second factor
only by left multiplication, the vector fields v! on the coordinate patches
U x H fit together to yield a well-defined vector field vt on P itself.

Lemma 2.3. Let Ri: P — P denote righ iplicati
ght multiplication by k € H. Th
(Ri)«(vT) = (Ad(k~)v) for allv € b. ! -

Proof. Since both sides are invariantly defined, we need only check the
ermula on a coordinate patch of the form U x H. In this coordinate patch
r}ght multiplication takes the form Ry = id x ry, where ry: H — H is just;
right multiplication on H. Let ly: H — H denote left multiplication on H
Thus, in our coordinate patch we have '

(Ri)« (1) = (id x 7%)+((0,V)) = (0,74 V)
= (0, Tkalp-1.V) = (Ad(k~ 1)),

;;vhere‘:/ we use the fact that V is a left-invariant vector field to write V =
k=1xV .
[ |

The Cartan Connection

In addition to the bundle P just constructed, we also get a g-valued 1-form
w on P, called the Cartan connection, arising as follows. Given a gauge
(U, 0), we have the canonical linear isomorphism

w: Ty (U x H) “S5N T, (U) x Th(H) — Tu(U) x b — g.
(v,y) — (v,wn () ~ Ad(h™)0(v)+wr (y)

Let us verif}f that as we vary the gauge, these isomorphisms fit together
smoo’;k}ly to give a 1-form w on P. We do this by comparing them by a
transition function of the form

f=(h,f)UxH— UxH.
(w,h) = (u,k(u)"'h)

T.he derivative of this map is the vertical left-hand map in the followin
diagram. :
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TunUxH)—> g v, y1) —— Ad(HEHB,() + 0 (1)

l I where 1 ?

Tk 'n(UXH)—> 8 (v, y2) ——> Ad(F0)0,(v) + 0 (0)

Since fa(u,h) = k(u)~'h and fo. (v,y1) = Yo, it follows from Proposition
3.4.10 i) and Exercise 3.4.12 that

wi (y2) = wa (fae(v,51)) = f3 (W) (V,01) = —Ad(h k) (K wr)v +wn (y1)-

This fact, together with the formula 62 = Ad(k~1)6; + k*wp, verifies the
arrow conjectured in the diagram above.

Properties of the Cartan Connection
Proposition 2.4. The Cartan conmection w on P with values in g has the

properties

(i) for each point p € P, the linear map wp: Tp(P) — g is an isomor-
phism,

(i) (Rn)*w = Ad(h™")w,

(iif) w(vl) =wv for allv € h.

Proof. (i) Since dim P = dim M + dim H = dim g/h + fiim h= dlrlrll g,
it suffices to show that wp:Tp(P) — ¢ is a monomorphism for eac P
Thus, it suffices to show that for v € T.(U) and y € T’L({{ ), the equation
Ad(h~1)8(v) + wp(y) = 0 implies (v,y).= 0. Now Ad(h )O(U)R—wHiyg
lies in b, and since b is Ad(H) stable, this means that 0(v) €b. —uso'u = 0
by the regularity property for Cartan gauges. But then wy(y) = 0, an
= 0 since wy is injective.
he?i(i:;3 eNe r(r)lust verigf the iommutativity of the following diagram.

Toun(U X H) —— g (vy) —— Ad(™)OW) +05 ()
le* Ad(k‘l)l where l ? Ad(E™
Tounio(U X H) ——> g (v, Ry y) ———> Ad(hkY '0.v) + 0y (Riy)

But Ad(hk)~'0(v) + wi (Resy) = Ad(k™1)(Ad(R™1)0(v) + wr (Y))-

(iii) The vector field vt in a chart is given by (0,V), where V is

the left-invariant vector field on H corresponding to v. Thus, w(0,V)
Ad(h~1)8(0) + wu (V) = v.

|l
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Note that the Cartan connection w on P gives a canonical parallelization
of the space P and is the analog of the Maurer-Cartan form that appears
on P = G in the case of a Klein geometry M = G/H.

Proposition 2.5. Let 0:U — P be any section over U.

(1) 0 = 0*w is a Cartan gauge on U compatible with the Cartan geometry
on M.

(ii) Let Q be the g-valued 2-form on P given by = dw + 1lw,w]. Then
0*§) = O, the curvature computed from the gauge o*w.

Proof. (i) To see this we note that it is automatically true for any of the
sections used to define P and that the others differ from these by gauge
transformations.

(il) © = df + 3[6,6] = 0*(dw + i [w,w]) = a*(N). [ ]

Proposition 2.6. There is a canonical one-to-one correspondence between
gauge symmetries of an effective Cartan geometry and bundle automor-
phisms of the bundle P.

Proof. Let b: P — P be a bundle automorphism and w the Cartan con-
nection on P. Then b determines a gauge symmetry on the maximal at-
las 4 in the following fashion. Given a connected open set U C M over
which P is trivial, and a section 0: U — P, we may compose ¢ with b to
obtain another section bo:U — P. Thus, we obtain two Cartan gauges,
(U,0*(w)) and (U,0*(b*w)). We define the gauge symmetry by sending
(U,0*(w)) — (U,0*(b*w)). Compatibility condition (i) for gauge symme-
tries is automatic, and condition (ii) follows also, for if 6, = 03, then
writing 6, = o3(w) and 63 = oj(w), we have 03 = o,h and hence
bop = b(oah) = b(oa)h since b is a bundle map; thus, (boo)*w =4 (bog)*w,
which is condition (ii).

Conversely, suppose that we are given a gauge symmetry b permuting the
charts in a maximal atlas for a Cartan geometry. Then we may construct a
bundle automorphism of the bundle P as follows. Given a chart (Uy,6,) €
A = {(Ua,0a) | @ € 4}, we have the associated chart (Ub(a), Ob(ar)) € A
given by the gauge symmetry. Now U, = Ub(a) = U, say. These two charts
determine two trivializations (which are bundle maps), 1o:U x H — P
and Yp(q):U x H — P. We define the bundle map over U by wb(a)djgl.
Moreover, compatibility condition (ii) for gauge symmetries ensures that
if (Ug,0p) € A is another chart with Us = U,, then the same gauge
transformation h giving 6, =, 63 also identifies their images under the
gauge symmetry Oy(,) =>n 6y(3). This means that y(z, k) = 14 (z, h(x)k)
and Yuy() (2, k) = Ye(a) (e, h(z)k), and hence Yy(a)¥5" = Yi(s)¥5 '~ Thus,
the bundle maps we have defined over our open sets U fit together to give
a uniquely determined bundle map on P.
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Finally, we leave it as an easy task for the reader to verify that the two
correspondences we have described are actually inverse to each other. W

§3. The Bundle Definition of a Cartan Geometry

Motivated either by the discussion above or by the Lie-theoretic proper-
ties of Klein geometries mentioned on p. 153, we are led to the following
alternate definition of a Cartan geometry.

Definition 3.1. A Cartan geometry § = (P,w) on M modeled on (g,b)
with group H consists of the following data:

(a) a smooth manifold M;
(b) a principal right H bundle P over M;
(c) a g-valued 1-form w on P satisfies the following conditions:

(i) for each point p € P, the linear map wp:Tp(P) — g is an iso-
morphism;

(i) (Rp)*w = Ad(h~!)w for all h € H;
(i) w(XT) = X for all X €.

By abuse of notation, we also speak of a Cartan geometry M. The g-
valued 2-form on P given by = dw + 1w, w] is called the curvature. If
p:g — g/b is the canonical projection, then p(2) is called the torsion. If
Q) takes values in the subalgebra b, we say the geometry is torsion free, or
without torsion. The geometry is called complete if the form w is complete,
that is, if all the w-constant vector fields are complete.” We say a Car-
tan geometry is effective, primitive or reductive, respectively, if the model
geometry is effective, primitive or reductive. ®

A geometry in the global sense of Definition 3.1 determines one in the
local sense of Definition 1.6, but the definitions are equivalent only when
the model is effective. The discussion in §2 culminating in Proposition
2.5 of the previous section shows that every effective Cartan geometry in
the original sense corresponds to an effective Cartan geometry in the new
sense. Proposition 2.6 shows that the converse is true and that the two
correspondences are inverse to each other. We shall henceforth take the
present definition as the definitive one.

91t would be very interesting to have a definition of completeness in terms
of M somewhat along the lines of Riemannian geometry, namely, something like
completeness of geodesics. Cf. [B. Kamté, 1995].
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Deﬁmtlon. 3.2. Let (P1,w) and (P,,w2) be Cartan geometries on M; and
M, re§pect1ve1y, modeled on the pair (g, §) with group H. Let f: M; — M.
be an immersion covered by an H bundle map f : P, — P, with the propert;
that f*ws = wy. Then f is called a local isomorphism of geometries, or a
local geometric isomorphism. If in addition f is a diffeomorphism ther’l it is
called an isomorphism of geometries, or a geometric® isomorphism.  ®

Exercise 33 If (P,w) is a Cartan geometry and b: P — P is any bundle
automorphism, show that (P,b*(w)) is also a Cartan geometry. a

‘ Note, in particular, that if £ = (P,w) is a Cartan geometry on M, then it
is geometrically equivalent to the geometry b*€ = (P, b*w)), where b'7P — P
is any_bundle map. It turns out that the two Cartan cor,lnections; will be
?Ql‘lal if and only if the b is the identity (see Theorem 3.5 ahead), but
it is clear that the geometries must be regarded as “the same” fror;l the

base definition of the geometry. The two Cartan connections w and b*w are
called gauge equivalent connections.

Exercisg 34 Verify that two effective Cartan geometries are isomorphic
in the quglnal sense of Definition 1.7 if and only if their corresponding
geometries are isomorphic in the sense of Definition 3.2. -

We have the following uniqueness theo
\ . rem for the bundle m i
an isomorphism of geometries. P CovETne

gheorem 3.5. .Suppose that p: My — Mo is an isomorphism of effective
arta'n geometmes,. anfi let fi: Py — P (j = 1,2) be two H bundle maps
covering ¢ and satisfying ffwe = w1 (j = 1,2). Then f1 = fa.

Pro9f. Setting f = f; ' fa (where f;': P, — Py is the inverse of fi), we
f)btalp an H bundle map f: P, — P satisfying f*w; = w; and covering7 the
identity map. Thus, it suffices to show that such a map is the identity. We
jte;:} = w; and P = P;. Define ¢: P — H by f(p) = py(p). Let us factor

FPAPxPYY Py AP
where p is the right multiplication map. Thus
w= (uo (id x ) 0 A)*w
= A*(id x ¢¥)*u*w
= A*(id x ) {77 Ad(y ™" )w + mwr }
=Ad(W N w + Y*wy.

10
Cartan uses the term holoédrique instead of geometric.
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It follows that Ad(¥ Hw —w = —Y*wH- But then, proceeding as in the
last paragraph of Proposition 2.1, we may show by induction that 9 takes
its values in N, for s =0,1,2,.... Since Nog = H, we see that 1 P — N
for s = 0. Assume inductively that : P — Ns. Fix p € P. Then the
equation says that for v € wp(Tp(P)) = g we have Ad(¥(p) v —v €
image(wgYsz) C ns. Thus, ¥(p) € Nj41 by definition. But p was arbitrary
here, so in fact ¥: P — Nj41. It follows by induction that ¥: P — N Since
N, is a normal subgroup of G that lies in H, it follows that Noo C K.

Since we have assumed that the geometry is effective, ¥(p) = 1 for all
p € P.

The following two exercises express obvious facts about the hierarchy of
Cartan geometries on bundles intermediate between P and M.

Exercise 3.6. Let (P,w) be a Cartan geometry modeled on (g,h) with
group H and let B C H be a closed subgroup with Lie algebra b. Show
that (P,w) may also be regarded as a Cartan geometry on P/B modeled

on (g,b) with group B. -

Exercise 3.7. Let P be an H bundle over M and let B C H be a closed
subgroup. Assume that (P, w) is a Cartan geometry on P/B modeled on
(g, b) with group B. Show that necessary and sufficient conditions on the
form w so that (P,w) is a Cartan geometry on M modeled on (g,h) with
group H are that condition (c), parts (ii) and (iii) hold for all elements of
H and b, respectively, and not just those of B and b. ]

Exercise 3.8. Resolve the following paradox. We have described above a
procedure that yields a one-to-one correspondence:

Equivalence classes of g Cartan geometries
Cartan atlases on M P (P,w) on M

Let (P,w) be a Cartan geometry. If b: P — P is any nontrivial bundle
automorphism, set n = b*(w). Then, by Theorem 3.5, n # w, and by
Exercise 3.4, (P,n) is also a Cartan geometry. Now, given an open set
U c M and a section o:U — P, the forms w and 7 pull back by o to
yield forms o*w and o*(n) = o*(b*(w)) = (bo)*w, which are compatible
in the sense of Definition 1.3 since o and bo are both sections over U (cf.
Proposition 2.5). Thus B(P, n) = B(P,w) and hence (P,n) = aB(P,n) =
af(P,w) = (P,w). This is in apparent contradiction to the fact that n # w.

]

As one might expect from the strong form of the invariance of the cur-
vature in the base definition, there is an analogously strong invariance in
the bundle definition. We have the following result.
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Lt_amma 3.9. Let (P,w) be a Cartan geometry on M modeled on (g,h)
with group H. Assume ¢: P — H is a smooth map. Define f: P — P by
f(p) = Ry(pyp. Then f*Q = Ad(y(p))S2.

P:'oof. By the calculation in Theorem 3.5, we have f*w = Ad(y~!)w +
Y*wy. Thus, by a calculation entirely analogous to the one in Lemma 1.9
we obtain f*Q = Ad(y(p))S2. l7

Corollary 3.10. The curvature form Q(u,v ]
. ,v) vanishes wh )
tangent to the fiber. ) vrenererere e

Proof. We may suppose that u,v € T,(P) are independent and that v is
tangent to the fiber. We may choose arbitrarily any map : (P,p) — (H,e)
such that 1.,(v) = —wp(v). (Since v is tangent to the fiber, ¥,p(v) € h =

T.(H).) Define f: P — P by f(q) = q-9(q). By the calculation in Theorem
3.5, and by the lemma, at p we have

ffo=AdW HYw+y*'wg =w+yY*wy and f*Q=Q,

so that wy(fiv) = wp(v) + waYwp(v) = - =0 i =
Thus, 2, v) = (F0) (1, v) = S fou, o ettt o T g

Corollary 3.11. The curvature form ) may be regarded as a 2-form on
the pullback of the tangent bundle of M to P.

Proc?f. By Corollary 3.10, the curvature may be regarded as a 2-form on the
quotient bundle T'(P)/ker , that is canonically isomorphic to 7*(T'(M)).
|

We also obtain various foliations on the principal bundle P, as seen in
the following exercise. ’

Exercise 3.12.* Let M be a manifold and £ = (P,w
= (P,w) a Carta
on M modeled on (g, h) with group H. () 1 geometry

(a) Let V' be any vector subspace of the Lie algebra h. Show that w=!(V)
is an integrable distribution on P if and only if V is a subalgebra of

B.

(b) If £ is torsion free and V is a vector subspace of g containing b, show

that w~!(V) is an integrable distribution on P if and only if V is a
subalgebra of g. Qa

Thfe manifold P may be regarded as some sort of “lumpy Lie group”!!
that is homogeneous in the H direction. Moreover, w may be regarded

11 o
Of course, it is not a group.
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as a “lumpy” version of the Maurer—Cartan form. As we shall see in the
following result, w restricts to the Maurer—Cartan form on the fibers and
hence satisfies the structural equation in the fiber directions; but when
Q # 0, we lose the “rigidity” that would otherwise have been provided
by the structural equation in the base directions and that would have as a
consequence that, locally, P would be a Lie group with w its Maurer—Cartan
form. (This subject is studied in detail again in §5.) Thus, the curvature
measures this loss of rigidity.

Lemma 3.13. Each fiber F' of the principal bundle P 1is canonically iden-
tified with H up to left multiplication by some element of H. The Maurer-
Cartan form wg on H induces a canonical form wp on F that agrees with
the restriction of the Cartan connection w o7 P to F.

Proof. By the very definition of a principal bundle, any fiber F of P may
be canonically identified with H up to left multiplication by some element
of H. This means that the left-invariant Maurer—Cartan form wg on H
canonically determines a “Maurer—Cartan” form wg on the fiber F'. Again
by definition, the vector field vt on P, for v € b, restricts to a vector field on
each fiber, which, under the canonical identification of F' with H (always
modulo left multiplication), corresponds to a left-invariant vector field on
H. Then the condition w(vt) = v for all v €h implies wp = w | F. |

Exercise 3.14. Use this result to get a second proof that the curvature
form vanishes when restricted to any fiber. a

Tangent Bundle of a Cartan Geometry

In §4.5, we saw that the tangent bundle of a Klein geometry G/H can be
expressed as a vector bundle associated to the principal bundle H —» G —
G/H via the representation

Adgy: H — End(g/h),

so that T(G/H) =~ G x g g/b. We also saw the related fact that for each
clement g € G there is a canonical linear isomorphism @g: Tgr(G/H) —
g/b such that pgn = Ad(h~')p,. These relationships continue to hold for
Cartan geometries. This is expressed in the next result.

Theorem 3.15. Let (P,w) be a Cartan geometry on M modeled on (g,h)
with group H. Then there is a canonical bundle isomorphism T(M)~ PxH
a/b. Moreover, for each point p € P with n(p) = z, there is a canonical
linear isomorphism p: To(M) — 8/b such that @pn = Ad(h™Y)pp.

Proof. Consider the following diagram. The columns are short, exact se-
quences and the two upper rows are isomorphisms, so there is a canonical
isomorphism across the bottom making the diagram commute.

§3. The Bundle Definition of a Cartan Geometry 189

Tp(pH)‘:—”H)

| "

w
T,(P) ——> o

lp

- oy

MOI‘eOver if Ve T (M) we may WI‘ite V=T u)=mrm lz O
bl T bl * * *

©ph(V) = ©pn (Tuph(Rrau))
= p(wpn(Rrxu))
= p(Ad(h™ )wp(u))
= Ad(h™)p(wp(u))
= Ad(h™)ep(mup(u))
— Ad(A ) (0).

It follows that we may define a smooth bundle map

¢Pxg— T(M).
(pw) = (v(p)w;  (p(w))

Note that

q(ph, Ad(h™")w) = ((ph), o\ (p(Ad(h™")w)))
= (m(p), (Ad(h)pn) " (p(w))
= (n(p), ;' (p(w))
= Q(pa w)

Thus, we get a canonical smooth bundle map q: P x g g/h — T'(M). This is

a ve.ctor t?undle equivalence since it is an isomorphism on fibers and induces
the identity map on the base M. ||

Cprollary 3.16. Let (P,w) be a Cartan geometry on M modeled on (g, h)
with group H. The vector fields X on M are in bijective correspondence u;ith
fynctzons f: P — g/ transforming according to the adjoint representation
(i.e., f(ph) = Adgp(h™ ') f(p)). The correspondence is given by

X fx = {p €EPw— ‘Pp(Xw(P)) € g/b}
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Proof. fx transforms correctly since
Fx(ph) = Pon(Xn(pny) = Ad(R™)Pp(Xn(p) = Ad(h™) fx (p)-

Conversely, a function f: P — @ /b transforming according to the adjoint
representation arises from the vector field X given by Xz = ¢, L(f(p),
where p € P is any point lying over ¢ € M. The choice of p does not
matter since ¢, (f(Ph)) = (Ad(h~)pp) " (AR f(0) = w0 (F(0)- W

Definition 3.17. Let (P,w) be a Cartan geometry on M modeled on (g, h)
with group H. A vector bundle E — P is called a geometric vector bundle if

it is given in the form E = P xgV for some representation p: H — GU(V).
®

Example 3.18. Theorem 3.15 shows that T(M) is always a geometric
bundle. L 4

Proposition 3.19. Let M be a connected manifold. Let (P,w) be a Cartan
geometry on M modeled on (g,h) with groups H.Fizz e M and fitp€ P
lying over x. Then

Adgy(h) € Gl*(g/b) for every
M is orientable & { h € H such that ph € P lies in the
same path components as p € P.

Proof. Recall that M is orientiable if and only if every loop on M is
orientation preserving (Proposition 1.1.17). Let A: (1,0,1) — (M,z,z) be a
loop on M. By Proposition 1.1.14, we may choose a partition of I, 0 = to <
t; < ---<tg=1and a compatible family of charts (Ui, i), 1 <1 <k,
such that A([ti—1,t]) C Ui, 1 S i <k Let o:(I,0,1) — (P,p, hp) be any
lift of . We consider the linear isomorphisms
1/)«L_;-E\(m) Po(t) .
R 29 T, (M) = g/h, t€ [ti1,ti), 1SSk,

and a basis for g/h so that this composite has positive determinant for t = 0.
The compatibility of the family of charts together with the continuity of
these maps implies that these maps have positive determinant forallt e I.
Then the commutativity of the diagram

Viex %
R 25 T.(M) — g/b
Wk*x%;lx Il l PprPp t= Ad(h—l)

) P,
R b (M) —2 g/h
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shows that the loop A is orientation preserving (i.e. ! iti
determinant) if and only if Ad(h™1!) I;1as posit%vfa1 Sétfrkr;l?r?a{;?has postive
jI‘hus, if M is orientable, then a path on P joining p to ph projects to an
orientable loop on M, and hence Ad(h) has positive determinant.
' .Conversely, suppose Ad(h) has positive determinant whenever p can be
Jf)lned to ph by a path. Then if X is any loop on M based at x, we can
lift A to a path joining p and ph for some h € H. Since Ad(h) has, positive
determinant, it follows that A is orientation preserving. |

D.eﬁnition 3.29. A Cartan geometry £ = (P,w) on M, modeled on (g, b)
with group H, is a first-order geometry if Ad: H — Gl(g/h) is injecti,ve
Otherwise it is a higher-order geometry. ‘&’

Exercise 3.21.* Le.t ¢ = (P,w) be a first-order Cartan geometry on M
glodeled on (g,h) with group H. Fix a basis (€1,...,&,) for g/h. Call thé
was;(sigfsfﬁ(l]\/.;) of theLforrzl2 (lc)p;l(él), <, 95 1 (€n)), where p € P lies over
, ible frames. Let e the set of admissible fi i
right H action given by e frames over M with

(05 (&1); -, 95 (€n)) - h = (o (€1), -, 9, (E0))-

Show that Q is a principal right H bundle over M and that the map P — @
sending g

pr (0p (81), -, 95 ' (€n))

is a bundle isomorphism. a

Curvature Function

’I"he curvature form €2 on the principal bundle P determines a certain func-
tion K on P called the curvature function.

Definition 3.22. The curvature function K: P 2 i
fined by the formula ! P Hom(X(a/b).g) s de

K(p)(Xl,Xg) = Qp(w;le,w;IXg).

L mima 3-23- The cu ’ C ﬁ -
S W
e 7vatu16 un t201l 2 ell deﬁned G/nd Sat’tS €s tlle m

K (ph)(X1, X2) = Ad(h™")(K (p)(Ad(h) X1, Ad(h) X2)).

Proof. First consider p fixed and suppose that Y; = X; + V;, for j =

1,2, for some V; € b. Then Q,(w, 'Y1,w; 1Y) = Qp(w, ' X1, w, ' X3) by

Corollary 3.10, since w,, 1V; is tangent to the fiber. Thus, K takes values in
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Hom(M\?(g/h), g)- The invariance property follows from those of w and €2.
]

Exercise 3.24. Let M be a manifold; let (P, w;), i = 1,2, be two geometri-
cally equivalent Cartan geometries on M with curvature functions K;, and
let b: P, — P» be a geometrical equivalence. Show that Ky (b(p)) = K1(p).

a

As in Exercise 3.28 of Chapter 1, we may interpret the curvature func-
tion as a section, the curvature sectiom, of the vector bundle, for p = 2,
over M given by CP(M) = P xXH Hom()\?(g/h), ). The action of H on
Hom(\?(g/h), 8) is given by h -9 = Ad(R)p(AP(Ad(h™1))).

Exercise 3.25. Show that the two bundles C?(M) associated to two geo-
metrically equivalent Cartan geometries on M are canonically isomorphic

and that, for p = 2, this isomorphism identifies the two curvature sections.
a

Exercise 3.26. Show that a Cartan geometry is torsion free if and only if
the curvature function takes values in the subrepresentation Hom()\2(g/h),

h) C Hom(X*(g/h), 9)-

Exercise 3.27. Show that K(p)(X,Y) = [X,Y] - wp(w™(X),w  (Y)))-
This identity interprets the curvature function as measuring the difference
between the Lie algebra bracket and the bracket of the corresponding vector
fields on P. a

Bianchi Identity

Within the graded Lie algebra A(P, g) of g-valued exterior differential forms
on any manifold P, various identities arise automatically. Here are some of
them.

Lemma 3.28. Let o, B € A(P,g) be homogeneous'? elements. Then

_ [ 2[[a,B)],8) if deg B is odd,
[, [8, 1] = {0 if deg 3 is even.

Proof. The graded Jacobi identity (Exercise 1.5.20(iii)) yields
(~1)%°(18, 8, 0] + (=1)""[16, 0, 8] + (=1)**[[ex, 1, B} = O,

where a = deg a and b = deg (3. By graded commutativity (Exercise
1.5.20(ii)), this is

12That is, each lies entirely within some grade of A(P,g).
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(=1 (=1)2*+ [, [8, B+ (=) (=1)***[[a, 8], B+ (=1)*[[a, 8], 8] = 0,

which yields the result. ]
Corollary 3.29. [a,[a,a]] = 0 for every homogeneous element a €
A(P,9)-

Proof. We may clearly assume that deg a is even, so that

o, [, @]] = 2([[ex, 0], @] (by (3.28))
= —2[a, (o, a]] (by graded commutativity). ]

The following Bianchi identity is a formal consequence of the above iden-

tities and hence is true of the “curvature” associated to any element of
degree 1 in A(P,g).13

Lemma 3.30 (The Bianchi identity). dQ = [, w].

Proof. Taking the exterior derivative of Q@ = dw + 2|w,w
- 2% t .
Exercise 1.5.20(i) 5lw,w], we get (cf

40 =0+ 3 {{dw,u] - v, du]}
1 1
= {10~ Slw,wl6] - [0, ~ 3w,0]])
1 1
= H9,0] - 3w, )]~ [0, 9] + 5 o, [, e}

1
= 5{[%w] — [0, 2]} (by the corollary 3.29)
= [Q,w] (by graded commutativity). m

Exercise 3.31. Show that [Q,9] + [Q,w],w] = 3[Q, [w,w]] by taking the
exterior derivative of the Bianchi identity. (In fact, there is a whole sequence

f)f derived identities obtained by successive differentiation of the Bianchi
identity.) a

The original Bianchi identity of Riemannian geometry is usually ex-
pressed as two identities, called the first and second Bianchi identities.
In' that case the Lie algebra g is the Lie algebra of rigid motions of Eu-
clidean space which decomposes canonically as a direct sum of a translation
part and a rotation part. The two classical identities correspond to the two
projections. See Chapter 6, section 2, for more details.

13
More generally, it is true of the curvature associ
) : ated to any element of d
1 in any differential graded Lie algebra. Y e
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Tensors

Definition 3.32. Let £ = (P,w) be a Cartan geometry on M modeled
on (g,h) with group H. Let V be a vector space and p: H — GIl(V) a
representation. A tensor of type (V, p) is a function f: P — V transforming
according to the formula R}, f = p(h~ 1) f. ®

We have already seen several examples of tensors. For example, the cur-
vature function of a Cartan geometry is a tensor of type (Hom(X(g/h), 9),
Hom()\?(Ady /), Adg)). Tensors of type (V, p) may of course be interpreted
as sections of the vector bundle E(p) = P xu (V,p) (cf. Corollary 3.16 and

Exercise 1.3.28, for example).
How does a tensor of type (V, p) appear in a gauge? The following defi-
nition replies to this question.

Definition 3.33. Let (U, 6) be a gauge of a Cartan geometry (P,w) corre-
sponding to the section o:U — P (ie., oc*w=10).If f: P — V is a tensor
of type (V; p), then ¢ = fo:U — V' is called (the expression of) the tensor
in the gauge (U,0). ®

Lemma 3.34. Let ¢:U — V be the expression of a tensor of type (V, p) in
the gauge (U,0). Let 0 =4 0', h:U — H, denote a change of gauge. Then
p(h~1)¢:U — V is the expression of the same tensor in the gauge U,0".

Proof. The change of gauge determined by h: U — H replaces the section
0:U — P by oh:U — P, so that ¢ = fo gets replaced by ¢’ = f(oh) =
p(h~1)f(0) = p(h~1)¢. |

Universal Covariant Derivative

Suppose V is a vector space and f e A°(P,V) (ie., f is a function on P
with values in V). Then the universal covariant derivative D is, roughly
speaking, just the derivative of f with respect to the w-constant vector
fields.'* More precisely, if X € g, then

Dxf=w ' (X)f, soDx:A’(P,V)— A P,V). (3.35)

Since this expression is linear in X, we may regard D itself as the adjoint
operator

D: A°(P,V) — A°(P,V ®g") defined by ux+(Df) = Dx f.

(Note that tx« is the coefficient homomorphism induced by

145 Cartan studied this notion in the context of projective and conformal
geometry in his papers [E. Cartan, 1934, 1935, and 1937].
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!V g— V.
v@n = n(X)v

For the details of this, see the subsection concerning change of coefficients
in §1.5.) The universal covariant derivative is the grandfather of all “geo-
metric” differential operators (i.e., operators with geometric meaning) in a
Cartan geometry.!5 For example, as we shall see below, the universal co-
variant derivative, which exists in any Cartan geometry, gives rise to the
usual covariant derivative if the geometry is reductive (cf. Definition 3.42)
In Appendix D we show how the classical operators in the plane (i.e. div.
curl, and the Cauchy-Riemann operator) arise from it via represent,amtior;
theory.

' Su‘ppose that f: P — V is a tensor of type (V,p). It is interesting to
inquire after the transformation properties of Dp to see if it also may be
interpreted as a tensor of some type.

Definition 3.36. For any representation p: H — GI(V'), we denote by

Aq(P’ (V) P)) (: Aq(P7 P))
= {pX(T(P)) =V | Rin=p(h )y, foralhe H}

the associated space of functions (if ¢ = 0) or forms (if ¢ > 0). A(P,V, p))

is cglled the space of q-forms on P transforming according to the represen-
tation p. ®

(We shall deal mostly with the case of functions in our use of this definition.)

E())<ercise 3.37. §how that there is a canonical isomorphism ¢: AY(P, p) =
{1 (P, p®@A1(Ad™)). (Note that an example of this correspondence is given
in the case ¢ = 2 by K = ¢(Q2); cf. Definition 3.22.) Q

Lemma 3.38. D: A°(P,p) — A%(P,p® Ad").
Proof. Let f € A°(P, p); then for any p € P, v € g, we have
vx+(R;(Df))(p) = L{*((Df)(Ph))
= (Dx f)(ph)
=w,p, (X)f.

Now the equation Rjw = Ad(h™!)w may be read as wpp Rhx = Ad(h™)w
for each p, and hence w;hl = Rh*w;IAd(h). Thus, ’

15
Cartan’s book [E. Cartan, 1938] (Engli i
- Cartan, glish translation, [E. Cartan, 1966]) i
devoted to the study of differential operators in Riemannian and Lorentzian] )g:f

ometries from this point of view. For example, he i ; .
operator. ple, he is able to derive the Dirac
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Lx»(RL(DF)(p) = (B (w (Ad(R)X))S-
Since for any vector field Y on P we have
(Ri:Y)f = fu(RnsY) = (fRr):Y = p(h" VY = p(h Y S,
taking Y = w, ' (Ad(h)X), we get

ux«(By(DS))(p) = p(h™ ) (w, H(AA(R) X)) f = p(h")Dpagmyxf M

Note that even if the representation (V,p) is irreducible, the same need
not be true of (V ® g*, p® Ad"). For example, it may be that the latter
decomposes as a sum of several representations V ® g* = Wio...0 Wk. In
that case D may be broken up correspondingly as a sum D = D1+ -ka
of several first-order differential operators where the D; are the projections
of D on the various summands. This is the way in wh.ich the Cauchy-
Riemann operator, div, and curl are obtained in Appendix D.

The following result calculates Df in the fiber direction.

Lemma 3.39. For X € b and f € A°(P, p), we have vxx(Df) = —p*(X)f,
where py:h — End(V) is the derivative at the identity of the representation

p:H — GUV).
Proof.
(tx+(D)(p) = wp (X)f = Filwy H(X))

d
i f(p exp(tX)) = = tzop(exp(—tX )f(p)

= —pu(X)f(p)- u

Exercise 3.40. Exercise 3.37 allows us to extend the definition of Vthe
universal covariant derivative to forms on P with values in (V, p) to yield
a map D: AY(P,p) — AU(P,p® g*). Suppose 7 is any g form. on .P. Shf)v}vl
Dn = 0 if and only if n may be expressed as a linear combination, wit

constant coefficients, of exterior products of the components of the Cartan
connection w with respect to some basis of g. a

Because of the canonical identification A°(P, p) = AO(M ) E), where E is
the vector bundle P x g (V, p), the universal covariant derivative a:ssocmt.ed
to (V,p) may equivalently be regarded as a linear first—order* dlfferin(;;ial
operator D: A%(M, E) — A°(M, F), where F' = P g (Veg,r® )
We note that this operator gives the derivatives of a s'ectl(?n of ‘E not in
a direction given by a tangent vector of M but‘ in a direction given by a
tangent vector of P. Another way to say this is that to describe how a
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section changes from point to point it is not enough to give the two nearby
points of M; we must give two nearby frames of M (infinitesimal meteors
in the parlance of §4.6).

Exercise 3.41. Show that, if P is connected, then
ker(D: A°(M, E) — A°(M,F)) =VH

where
VE={veV|phw=v forall he H}. Q

This exercise shows that, apart from the constant functions, there are no
tensors on M that are “generalized covariant constant” functions.

Finally, we remark that if the representation V ® g* decomposes as
a sum of representations V ® g* = W; & --- & Wg, then the bundle
F decomposes correspondingly as a sum F = F; & --- & Fy, where
F; = P xg W;. Moreover, the constituent operators in the decomposi-
tion D = 1?1 + -+ 4+ Dy may be regarded as first-order linear differential
operators Dy: AP(M, E) — AP(M, F;).

Covariant Derivative in a Reductive Geometry

The covariant derivative D (see Definition 3.47) generalizes the vector gra-
dient in Euclidean space (see Exercise 3.50). However, the existence of a
covariant derivative requires that the geometry be reductive.1®

Definition 3.42. A Cartan geometry modeled on (g,h) with group H is
reductive if there is an H module decomposition g = § & p (cf. Definition
4.3.2).17 ®

Let us assume now that the geometry we are considering is reductive in
this sense. Any form with values in g will decompose into an b component
and a p component. This is true in particular for a Cartan connection
(w = wy + wp) and any gauge (§ = Oy + 6,). In addition, the universal
covariant derivative also decomposes as Dy = D,, x + D,, x.

By Lemma 3.39, for X € h and f € A%(P,p), tx.(Df) = —p(X)f,
namely, Dy = —p. That is, Dy merely tells us how f transforms under

$The reductive geometries have, therefore, a much richer structure than the
nonreductive ones.

"This use of the term reductive conflicts with another use of it in the theory of
Lie algebras, which calls a Lie algebra reductive if it is the sum of a semisimple
ideal and an abelian ideal. The two notions are loosely related in the following
sense. Given a Klein pair (g, h) for which the representation ad: ) — gl(g/h) is
injective and b is reductive in the Lie algebra sense, then (g,§) is reductive in
the sense of Definition 3.42 (cf., e.g., [J. Humphreys, 1972], pp. 31 and 102, and
[W. Fulton and J. Harris, 1991], p. 131).
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H, which we already know, so this projection is not very interesting. The
component Dy, on the other hand, is very interesting.

Definition 3.43. In a reductive geometry the operator l~)p is called (the
bundle version of) the covariant derivative. A function f: P — V is called
covariant constant or parallel if Dy f = 0. B

Since sections of geometric vector bundles over M can be interpreted as
functions on P, it follows that this notion of parallel applies also to these
sections. We wish now to go into more detail on this point in order to
reinterpret the covariant derivative (as well as the notion of parallel) at the
level of sections. The key idea is to use the reductive hypothesis again to
get a canonical way of lifting a vector field on M to a vector field on P.

Definition 3.44. The distribution on P given by wy = 0 is called the
horizontal distribution and vectors in it are called horizontal vectors. %

Note that a function f: P — V is parallel if and only if it is constant in
the horizontal directions. We now relate these horizontal directions to the
directions in the base M.

Lemma 3.45. The projection m: P — M induces an isomorphism between
the vector space of horizontal vectors at p € P and Ty (y)(M).

Proof. From the exactness of the columns in the following diagram and

from its commutativity

Wy
LH) —— b

|,

T,P)——=> g=h®p

P

LM)——=> ¢/h

(see the proof of Theorem 3.15), the lemma is immediate. |

Definition 3.46. Let (P,w) be a reductive Cartan geometry on M. If X
is a vector field on M, then the horizontal lift of X, denoted by X, is the
(unique) vector field on M such that Tap(X) = Xn(p) for all p € P and

w,,(X')=O. ®

Definition 3.47. Let (P,w) be a reductive Cartan geometry on M, E=
P xy (V,p), and X € I(T(M)). Let ¢:I'(E) = A°(P, p) be the usual

§3. The Bundle Definition of a Cartan Geometry 199

identification of sections of vector bundles associated to P with functions
on P (cf. Exercise 1.3.28). The (base version of the) covariant derivative
Dx:T'(E) — T(E) is defined by the equation ¥(Dx f) = X (4(f)), where
feT(E). , ®

Proposition 3.48. Let k: M — R, X,Y € I'(T(M)), and f,g € T(E);
then the covariant derivative has the following properties:

(i) Dx(f +9) = Dxf + Dxg;
(i) Dx+yf=Dxf+ Dxf;
(ili) Dkxf =kDxf;
(iv) Dx(kf) = X(k)f + kDx f.
Proof. (i) and (ii) are straightforward from the R-linearity of 1 and of

the_R*bilinearity of the derivation X. For (iii) we note that 7*(k)X is the
horizontal lift of kX, where m: P — M is the canonical projection. Thus,

W(Dixf) = Dy iy g (W(f)) = 7" (k) D (¥(f)) = 7* (k)p(Dx f) = $(kDx f)
whence (iii). Finally,
¥(Dx (kf)) = X(
= X(n* (k)y(£))
X (n* (k)
= (T X(k))¥(f) + 7" (k)Y(Dx f)
(X (k)f) +Y(kDx f),

which, by the linearity and injectivity of 1, yields (iv). |

Il
>

'Although we see some of the properties of D from Proposition 3.48, it is
still not clear how to calculate it in terms of a gauge. The following result
remedies this.

Proposition 3.49. Let

(U, 0) be a gauge for a reductive Cartan geometry,
X be a vector field on U,

¢ be the expression in the gauge (U, 0) of a tensor of type (V, p).

Then DX¢ = X(¢) - p+(0y(X))1p is the expression in the gauge (U,6) of
the covariant derivative of the tensor expressed by ¢ in the gauge (U, 6).

Proof. Let o:U — Py = 7 }(U) be the section corresponding to the
gauge (U, 0) and let ®: P — V be the tensor of type (V,p) of which ¢ is
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the expression. If o, (X) were horizontal, then our job would be easy since
then it would be the horizontal lift of X and we would have

(Dx@)(@) = (Dx®)o (@) = Xo(@)(®) = 0,(Xo(z) = Pu(04(Xa))
= (20 0)u(Xs) = ¢:(Xz) = Xa(®):

This does indeed yield the formula claimed when o.(X) is hotizontal since
in that case the expression 8y (X) vanishes. The general. case will come fror}l
making a change of gauge so that o’ (X) is horizontal in the new gauge o'.
We have & = Ad(h~1)0 + h*(wn). Applying this to X and taking the b
components yields

0,(X) = Ad(h™")8(X) + wi (he X).

We may choose h:U — H so that at a fixed but arbitrarily chosen point T
we have h(z) = e and h. X = —04(X). Then, at z, we have

Dx¢' = X(¢) = X(p(h™")) = X (p(h™)d + p(h™)X(¢)
= —(p(h)+(X))¢ + X(¢)-

The left- (and therefore right-) hand side of this equation is D X<I> expressed
in the gauge (U, ¢'). By Lemma 3.34, and because h(z) = e, this is the sam:
at z, as the expression for D x® in the gauge (U,0).

Exercise 3.50. Show that in Euclidean space the covariant derivati\./e. of
a vector field is just the usual vector gradient. [Hint: Apply Proposition

0 0 s th
3.49 using the gauge given by O(e;) = (ei 0) € euc, (R), where e; is the

a
standard column vector.]

For simplicity, we have expressed the covariant derivative as a m}?pt? }f S
['(E) — I'(E), where X is a vector field on X. However, we notgt aul Oln
operator is local in the sense that the value of Dx f at ¢ depen fs on yM
the value of X at = and the behavior of fona nelghborhood_ o :; in ! .
(In fact, only the zero- and first-order terms of the Taylor serlesdo f :h ai
play a role in the contribution of f to this forr.nula. Cartan woulh s:y X ad
the formula depends only on the values of fin a ﬁrst'-ord.er neigh l;)r 00
of z in M.) These and similar facts may be invoked to justify the following
definition and exercise.

Definition 3.51. A section n € ['(E(p)) is called parallel along a curvg
o:1 — M if Dyyn = 0 for every t € I.

Exercise 3.52. Show that a function f: P — (V,p) is pfirallel in the sense
of Definition 3.43 if and only if the corresponding section 7 e I'(E(p)) [135

parallel along every curve in M.
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Special Geometries

In general, the values of the curvature form will span, as a vector space,
the whole of the Lie algebra g. In special cases, however, this span may not
be the whole of g. For example, in the case of a torsion free geometry, the
span will lie in h. However, as the following lemma shows, the span cannot
be an arbitrary vector subspace of g.

Lemma 3.53. Let V C g be the vector subspace spanned by the values of
the curvature form ). Then V is an H submodule of g.

Proof. It suffices to show that the set of values of §) is stable under the ad-
joint action of H. Let v = Q,(Xp,Y},). Then Ad(h~1)v = Ad(h™1)(Q,(X,,

Yp)) = (Ri%)(Xp, Yp) = Qi (Rhu Xp, RpiYy) = a value of Q. ]

In particular, if V' C b, so that the geometry is torsion free, then V is an
ideal in .

Definition 3.54. Let V C g be an H submodule. A Cartan geometry of
g-curvature type V is a geometry whose curvature form takes values in V.
®
Assume now that our geometry is torsion free and the adjoint action of
H on b is irreducible. In this case, there are no special geometries arising
from g curvature-type conditions. Nevertheless, the representation of H
on Hom(A?(g/h),h) may have nontrivial submodules V so that one may
distinguish various cases according to how K relates to these submodules.

The following definition carries the same idea as Definition 3.54 but the
context is different.

Definition 3.55. Let V C Hom(A?(g/h), b) be an H submodule. A Cartan

geometry of curvature type V is a geometry whose curvature function K
takes values in V. &®

By Exercise 3.4.8(b), Homy (A%(g/h), h) C Hom(\%(g/}), b) is a submod-
ule and, for H connected, it is the submodule of H invariant elements. If
the submodule is nontrivial, this leads to a class of special geometries, the
constant-curvature geometries, studied in §4.

When H is a compact group, it is known from the representation theory
of Lie groups that Hom(A\?(g/h),h) decomposes as a direct sum of irre-
ducible submodules. In this case C?(M) and its section K will split up
correspondingly, and we may speak of the various “component curvatures”
associated to K. For example, in the general Riemannian case C%(M) splits
into three pieces corresponding to the scalar, the Ricci, and the Weyl curva-
tures (cf. Table 2.5 on page 236). In the special case when M has dimension

4, the Weyl curvature splits up further into a self-dual and an anti-self-dual
part.
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When H is noncompact, even though Hom(\?(g/h), ) may not in general
decompose into irreducibles, it may still have nontrivial submodules. For

example, the composite mapping
Hom(X(a/h), h) ~ X*(a/h)” ® b ‘23" X*(a/h)" @ End(g/h)

_N(g/h) ®e/h® (a/) — (9/h) ®(8/b)

~ ot Aut@uew* — (" (v)u*—u" (v)t*)@w™

is an H module homomorphism, and so its kernel is a submodule.

Definition 3.56. The kernel of the composite mapping above is called the
normal submodule of Hom(X\?(g/h),h). ®

Exercise 3.57. Show that if End(g/h) is given the H module structure
h-¢= Ad(R)¢pAd(h™!), then the map ad:h — End(g/b) and the canonical
map End(g/h) — 8/h ® (g/h)* are H module maps. Use these facts to
verify that the composite mapping above is an H module map. *

The normal submodule will be useful in defining normal geometries. In
some cases—for example, in conformal geometries—“normal” means that
K takes values in the normal submodule. In other cases, such as projective
geometry, it means that K takes values in a submodule analogous to the
normal submodule. In general, however, a normal geometry is defined in
a somewhat ad hoc manner so that the Cartan geometry will be uniquely
determined by a given set of geometric data that may seem at the outset to
have no necessary connection with a Cartan geometry at all but determines
one via Cartan’s method of equivalence. Several examples of this are given
in Chapters 6, 7, and 8 on specific geometries.

§4. Development, Geometric Orientation, and
Holonomy

In this section we study properties related to paths in a Cartan geome-
try. In particular, we introduce the notion of geometric orientation'® in
this context. Its importance for us is in connection with the classification
of locally Klein geometries given in Theorem 5.4. Then we discuss issues
connected with the development of paths in a Cartan geometry as paths
on the model space. In the last part of this section, we apply the notion
of development to introduce and to discuss some issues surrounding the
holonomy group of a Cartan geometry.

18(ur notion of a geometric orientation differs from the notion of the same
name discussed in [E. Cartan, 1941].
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Recall the notion of development given in Definition 3.7.4 in connec-

tion with the global version of the fundam
ental th .
assumed we had eorem. In that case we

a Lie group G with Lie algebra g,
a Ir}anlfo}d P equipped with a g-valued 1-form w,
a piecewise smooth path o: (I, a,b) — (P, p,q), where I = [a, b].

We showed that, given g € G, there is always a unique path :(I,a) —

(G, g) such that 6*wg = o*w. This path on G
of w starting at g. p was called the development

Recall that ad w takes val i i
Exercise 3.4.9). values in the Lie algebra End(g) of Gl(g) (cf.

Lemma 4.1. Let A be a path on P and let

(i) A:({,a) — (G,e) be the development of X via w,

(ii) A:(1,a) — (Gl(g),e) be the development of X via ad w.

Then A(t) = Ad(A(t)) fort € I.

Proof. Since, by Proposition 3.1.8, the hom i
, 1.8, omorphism Ad: G — Gl(g) h
the property that Ad*wg(g) = Adsewg, it follows that (0) hos

Ad(N)*wai(g) = A Ad*wai(g) = N Adwewe = Adyo(Nwg)
= Ad.e(A*w) = A" Adye(w) = Xad w = Nwgy(q).

Since A(0) = e = Ad(A(0)), it follows that Ad()) = A |

Geometric Orientation

Let £ = (P,w) be a Cartan geometry on a manifold M with model (g, )
and (not necessarily connected) group H. We approach the notion o’f a

geometric orientation for £ indirectl i
: ) y through the notion of th i
orientation-preserving subgroup of H. © geometric

Definition 4.2. Fix a point p € P lying over z. An element h € H is
ca}led geometm'cally orientation preserving with respect to the base point
p if .there is a path A from p € P to ph € P whose development, via ad
w, yields a path A on Gl(g) joining the identity e to Ad(h). Th,e set of
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geometrically orientation-

preserving elements of H is denoted by Hor (cf.
Propositions 4.4 and 4.5). ®

We will need the following result.

Lemma 4.3. Let p,q € P, leto be a path joining p to g, and let 6: (I,a) —
(Gl(g),e) be its development, via ad w, 0T Gl(g). We claim that, for any
h € H, the development of Rpo on Gl(g), via ad w, and starting at the

identity, is the composite
Ad(Ad(R)™H)
(1,0) = (Gl(g),¢) — (Gl(g)€)-

g—Ad(h) " 'gAd(h)

Proof. We calculate

(Ad(Ad(R)™") 0 0) wai(e) = F(Ad(Ad(h) 1)) wai(s)
= &*(Ad(Ad(R) )weue (PY 3.1.8)
= Ad(Ad(h™1))8" waue) = Ad(Ad(h™))o" (ad w)
(by definition of )
= o*(Ad(Ad(h1))ad w) = o* (ad(Ad(h™1)w)) (by 3.3.5(ii))
= o*(ad(Rjw)) = 0" Rjad(w)
(Rpo)*ad(w)-

I

fundamental theorem of calculus (3.5.2),

By the uniqueness part of the
|

Ad(Ad(h)~!) 0 & is the development of Rp0.

Proposition 4.4. For P connected, the subset Hor C H of elements pre-

serving the geometric orientation does not depend on the choice of p.

Proof. Fix p,q € P. Let h € H,, preserve the geometric orientation with
respect to p. We wish to show that it also preserves the geometric orienta-
tion with respect to g.

Let \ be a path joining p to ph and o be a path joining p to ¢. Let
the developments of A and o on Gl(g), via ad w, and starting at the
identity, be denoted by X:(I,a,b) — (Gl(g),e,Ad(h)) and 6:(I,a,b) —
(Gl(g), e Ad(T!)), respectively.

By Lemma 4.3, the development of Rno, via ad w, and starting at the
identity, ends at Ad(Ad(h)~1)Ad(l) = Ad(h~lh).

Using this fact, the following diagram, and Exercise 3.7.5, we see the
path o7t *x A% (Rpo) develops, via ad wg, to a path on Gl(g) joining e to

Ad(TY)Ad(h) - Ad(h~'1h) = Ad(R).

4. i
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Ad(HAd(m) AL h)

This sho
ws that h preserves the geometric orientation with respect to g. W

Proposition 4.5. For P connected, we have H, C H,, <« H
or .

Proof. If h lies in the identi

tity component H, of .
h(t) on H wi _ . of H, then there
01(1 zpjlcl)ininwml; I’:(EO)h— e and h(l) = h. This path then yields a p;stlil pl?(tt})1
to the Mau% ep C ph. Since this path lies on the fiber pH, where w resf'
H ond hene I‘t—0 :gt(a;llztf)(;rm oé H, it follows that ph(t) develops to h(tr)lcotr?
heH,. on GI(g). Thus it joins e to Ad(h), showing that

Next we show that H,, i
or 1S a sub i it i
un(ier ettt s 2 8 group of H by showing that it is closed
If hy,hy € H,, then there ar

, = Hor, ere are paths A\ d A2 joini

" s A1 and Mg joini
fh :,i gzlsllgiiltltvelf{,d \(&;Lhc))se developments \; and 5\2 on JGl(gI;g \;:)iat(z;éJ Zl fn?d
0 1) and Ad(hz), res i 7 ey
AR Ad(Ad(hQ)—lzj\)l. pectively. Moreover, by Lemma 4.3,

Ad(h)Ad(Ad(hy) YAd(h;) = Ad(hhy)

Ad(h)Ad(Ad(hy) ™) A,
Ad(Ad(h) HAd(hy)

~

Then t joi

pabtehn 5\21(1 T;?hA§ ; ((if(izzd )\;1 ) _]OIIIISA p to phihy and develops, via ad w, to the
2 e . . . !
hiha CH (h2)~')A1 on Gli(g) joining e to Ad(hihz). Thus,
If h € H,,, then there is j

ors . a path A joining p to ph wh A
on Gl(g) via ad w, joins the identity to Ad(h). Tfenvf\‘cisfsdae\;)zl:l??l?njc )
oining
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(= ph) to gh~! (= p), and the development of A’ll, Av—izlm adhc.u,hstzgtsn;gt
Zt t—hep identity on Gl(g) is (ct. Exercise 3.7.5) Ad(h)™"A™", which e

-1 Thus, h™! € Hor-
Ad’I(‘tf_)l)show thlzst H,. C Hois normal, let b € Hor and k € H. Choose a path

i i to a path X on Gl(g) joining
joini h, so that it develops, via aq W,  ( oi
)\@SHXE%S t(;SI;r Lemma 4.3, RxA, which joins pk to phk = pk(k~thk),
e . .
develops, via ad w, to the composite

N -1
1,04 Gl(g), e 2244 Gl(g), 0
- -1 H,. 1
which ends at Ad(Ad(k)"1)Ad(h) = Ad(k 1hk). Thus, k™' hk €

i tric orientation-
ile i i difficult to describe the geome ie
e e Seemsf a Cartan geometry with more precision than

i o . . —
D ven supgroup Mo here is an important case 11 which Hor = He.

that given in Proposition 4.5,

Proposition 4.6. Let (P,w) be a Cartan geometry on M moc?el-jld o;zI (g;hl
¥;tc;ngroup H. Let G be a Lie group realizing g and contaiming
wi .

subgroup. Assume that

(i) GenH = H., and

(i) Adg:G — Gl(g) is injective.
Then Hor = He.

iti it suffices to show the reverse
'PrOOt". - I-iILOTEDHHE :I{dpfg?(p;sglcl)? (}i‘i’eg there is a path )\ ?oininghp
mduhSIOI;o?: tdeveloprflrent, via ad w, yields a path A on Ql(g) _]01nt1}111g5‘1:me1
E((i)ezr)ltitv; e to Adg(h). We can also develop A via w, to ylzki aAlc)la (j\) N
G joining the identity e to an element g € G. Bhy Ifen;m:d . i,S - gctive. iy
so, in particular, Adg(g) = Adg(h). Thus, g = ,I;mc o .
foflows that h € GeNH = He and hence Hor C He-

Corollary 4.7. Suppose that H is a Lie group a@d p:L H -; g)lgf)wz: ;167;

injective homomorphism. Regarding V as an abelian z; a 5q be a, e set
J= hx,V (ie., [h,v] = pu(R)V forheh, vE V). Let}} ,c—u_ Jea Carian

geometrlg); on M modeled on (g,h) with group H. Then Hor = He

P is connected.

i = V.

Proof. First note that g is the Lie algebra of the ng groupdqY ' H(i>)< ,; v
C;‘earl}.r H C G. By the proposition, it suffices to verify conditions

ii).

‘ )(1) Let (h,v) € H X,V and (k,w) € h x, V. We have

Ad(h, v)(k,w) = (ad(h)k, p(h)(w = pu(k)V)):
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Then
Ad(h)k =k, Ad(h) = idy,
Ad(h,v) =idg = ¢ p(h)w = w, for all (k,w) € g = < p(h) = idy,
p(h)p.(k)v =0, v=0,

and so Ady: G — Gl(g) is injective because p is injective.
(ii) As a topological space, G is just the topological product of H and V.
Since V is contractible, it follows that G, = H.xV and hence G.NH = H..

Definition 4.8. Let £ = (P,w) be a Cartan geometry on a manifold M
with model (g,h) and (not necessarily connected) group H. ¢ is called
geometrically oriented if H,, = H. The principal covering M, = P/Hy, —
M (with group H/H,,) is called the geometric orientation cover of M.
€ is called geometrically orientable if there is a reduction of the bundle

P — M to the subgroup H,,. A geometric orientation is the choice of such
a reduction. *®

Exercise 4.9. Show that a Cartan geometry ¢ = (P,w) on M is geomet-
rically orientiable if and only if the principal covering space My, — M is

trivial. Show that the geometric orientation cover of M is geometrically
oriented. Q

Proposition 4.10. Locally Klein geometries are geometrically oriented.

Proof. Consider a locally Klein geometry M = I' \ G/H. As a Cartan

. geometry, this has principal bundle P =T\ G and Cartan connection w =

wr\g- Fix the point p=Te € P =T\ G. Let h € H be arbitrary. Since G is
connected, we may choose a path A: (1,0,1) — (G, e, h). Let its projection
to P be X:(1,0,1) — (P,p,ph). Since T'wr\g = wgq, it follows that the
development of A on G via A*wr\g is the same as the development of X on
G via wg, which is just itself, which ends at h. Thus, the development of
A on Gl(g) via ad wr\g is the development of A on Gl(g) via ad wg, which

is A = Ad(}) ending at Ad(h). Thus, h € H,, for any h € H. It follows
that locally Klein geometries are geometrically oriented. ]

Lemma 4.11. The Cartan geometry & = (P,w) on M,, with model (g,h)
and group H,, is orientable with a canonical orientation.

Proof. By the very definition of H,,, the geometry is geometrically ori-
entable and is itself a geometric orientation.
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Development of Paths on M

Let £ = (P,w) be a Cartan geometry on M modelled on the Klein geometry
(G,H). Here we are ultimately interested in the development of a path
on M as a path on G/H. However, we begin by considering again the
development of paths on P. If & is flat, so that the structural equation
holds for w then the discussion of monodromy given in §7 of Chapter 3
applies directly. In the case of a general Cartan geometry the structural
equation fails so the development of a path on P depends on more than
just the homotopy class of this path. However, there is a remnant of the
structural equation still in force. According to Lemma 3.13, on each fiber
pH of P the Cartan connection can be identified with the Maurer-Cartan
form of H. This means that the structural equation continues to hold in
the fiber directions even in the most general Cartan geometries. The effect
of this will be to maintain some homotopy invariance in the fiber direction
in the development construction. Our study of this phenomenon will be
based on the following observation.

Lemma 4.12. Let £ = (P,w) be a Cartan geometry modeled on the Klein
geometry (G, H). Let

UZ(Iaaab) - (P,p,Q)
h:I—-H

be piecewise smooth maps, where I = [a,b]. Then (ch)~ = &h, where the
development (oh)™ starts at h(a) and the development & starts at e € G.

Proof. First note that (ch)~(a) = h(a) = &(a)h(a), so the two curves on
G start at the same place. Let us show that the Darboux derivatives of Gh

and (ch)™ are the same.
For &h we can use Exercise 3.4.12 to calculate the Darboux derivative

as
(5h)*wg = Ad(h™1)5"wg + h*we-

Now consider (oh)™~. By the definition of development, we have
(ch)~*wg = (oh)*w. We cannot use Exercise 3.4.12 to calculate (oh)*w,
since oh takes values in P, which is not a Lie group. However, a similar
calculation is possible. Factoring oh as

I A <1t PpxH- S P

we find

(oh)*w = (po (o x h)o A)'w
= ((o0 x h)o A)*p*w
=((oc xh)o A)*(Ad(h™Hmpw + THWH)
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\ =Ad(h™ ) (mpo (0 x h) 0o AY*w + 7h o (0 X h)o AY*'wy
= Ad(h Y o*w + h*wy
= Ad(h™1)6*wg + h*we.

Thus, (Gh)*we = (0h)~*wg and hence Gh = (oh)™. |

The first consequence of Lemma 4.12 is that we can extend the notion of
development of paths on P to that of development of paths on M Where;)
a path on P develops a path on G, a path on M develops a path 0;1 a mod ?
space G/H. This is studied in Proposition 4.13 and Definition 4.15 )

Prgplosition 4.13. Let{ = (P,w) be a Cartan geometry on the manifold M
;n-o_ eled on thf Klein geometry (G, H). Let 0:(I,a,b) — (M, z,vy), where
’ _d[a,b]. Let 6:(I1,a,b) — (P,p,q) be any lift, and let &: (I,a) — (é e) be
its e'uelopment' on G. Then its image & = n5: (I,a) — (G/H,e) in7G/H
is a curve that is independent of the choice of the lift 6. ,

Proof. If : (I,a,b) — (P,p,q) isa li i 5
0 ,D,q) is a lift of o developing to : (I, a G
then any other lift has the form 6k for some map h: I — H Em’d )b; L(em,rfl)a;

4.12, &h develops to Gh. Si 6h = m6
- t,he L ceve p ince 76h = 74, the two developments on G/H
|

]:?xermse 4.14." In the context of Proposition 4.13, consider a redu
tive model of the form (G,H) = (H x, V,H), wh;zre p:H — Gl(VC_
12/3}{ repre‘s/entation and we regard V as a commutative Lie; group Thexz
S = Curizdg.g(]_ ('I))xp V (ie., [h,v] = p(h)v for h € h, v € V).
o :(1,a,b) —» (M, z,y) may be lifted to a horizontal curve
:(I,a,b) = (P,p,q), namely, a curve such that 6*w takes values in V.19

Show that the development of : N
fying 6*w — d3. pment of o on V is the curve &: (I,a) — (V,0) satils{.

Since any curve on M h i .
sense. as a lift to P, the following definition makes

Ee(fiir;igion 4.15. L(.et ¢ = (P,w) be a Cartan geometry on the manifold M
; 0_ eled on the Klein geometry (G, H). Let o:(I,a,b) — (M, z,y), where

= [a,b]. Then the development of o on G/H is the projection :co é‘/H of
the development on G of any lift to P of o. ®

0. O Iete lllteI Ietatlon Of thlS nOtIOIl Of deVelO Hle!lt, see 3 m

19 -
Of course, V is its own Lie algebra.
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This definition has a certain conceptual power. For example, if we have
a notion of straight line?® on G/H, we can define the corresponding notion
of a geodesic on M by calling a path on M a geodesic if it develops to
a straight line on G/H. See Definitions 6.2.6 and 8.3.4 for examples in
Riemannian and projective geometries. In general, however, there is no
notion of a straight line in G /H. There is, however, the following more

general notion.

Definition 4.16. Let £ = (P,w) be a Cartan geometry on M modeled
on (g,h) with group H. A generalized circle is a curve on M that is the
projection of an integral curve of an w constant vector field on P. ®

Exercise 4.17. (i) Show that the generalized circles in a Klein geometry
M = G/H are the projections to M of the left G translates of the one-

parameter subgroups of G.
(ii) Show that the generalized circles in the Euclidean plane are the
circles and the straight lines. Determine the generalized circles in Euclidean

3-space. a

Holonomy

A second consequence of Lemma 4.12 is that we obtain an analog of the
notion of the monodromy of a loop on P called the holonomy of a loop on
M. In general, only the loops on M whose classes lie in Im 7,: m1(P,p) —
m (M, z) have well-defined holonomies attached to them. (But see §3 of
Appendix A.)

Definition 4.18. Let £ = (P, w) be a Cartan geometry on M modeled
on the Klein geometry (G,H). Fix a point p € P lying over = € M.
Let \:(I,8) — (M,z) (where I = [a,b]) represent an element of Im
mem(P,p) — m(M,z). Let \:(I1,8I) — (P,p) be any lift, and let
X:(I,a) — (G,e) be its development on G. Then X(a) € G is called the
holonomy of the loop A with respect to p. The holonomy group of § with
respect to p is the set ®(p) C G of all such holonomies. ®

This definition is justified in the following exercise.

Exercise 4.19.

(i) Show that the holonomy of a loop with respect to p is independent
of the choice of lift.

201, 5 reductive model G/H where g = h @ P, a straight line is (up to left
translation) the image of a one-parameter subgroup whose generator lies in p.
In the absence of this property, there is no general notion of a straight line in a
homogeneous space. The best one can do in general is speak about generalized
circles, that is, the images of arbitrary one-parameter subgroups.
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(i) Show that if the holonomy of the loop A with respect to p is g, then

its holonomy with respect to ph is h~! i
vy ph is h™*gh. In particular, ®(ph) =

(i) Show that ®(p) C G is a subgroup.

(iv) Show that if p,q € P lie over z,y € M, respectively, and o: (I,0,1) —

(P,p,q), then ®(y) = g~} ;
e g~ ®(z)g, where g is th -
opment (starting at e € G) of 0. g 1 the endpoint of a devel-

v) ief P C'Im i m1 (P, p) — m1 (M, z) be a subgroup. Show that the
olonomies corresponding to the loops in M with classes in p form
subgroup ®,(p) C ®(p). g :

(vi) Show that for a flat geometry ®(p) i
Spow shan for 2 fl y ®(p) is the monodromy group of (P,ulz:).

Definition 4.20. The sub,
. . group ®o(p) C ®(p) corresponding to th
homotopic loops on M is called the restricted holonomy groui. ) nul‘;

Exercise 4.21. Show that
(i) ®o(p) is a connected subgroup of G,
(ii) ®o(p) is a normal subgroup of ®(p),
(iii) ®o(p) is trivial for a flat geometry,

(iv) thegizl ?s 31 cz:)nonical epimorphism 7, (M,z) — ®(p)/Po(p). (This
could jus e called t . .
geome’cry.)y ed the monodromy representation of the Carta;

e]:?cic;rixsl[:}lle t4_.2;. ‘One inferpretation of the meaning of a torsion free geom
at infinitesimal loops have no translati i .
However, this doesn’t necessari octinl looos. Tho evmm:
, sarily hold true for actual 1
of a sphere rolling without slippi isti o e
. pping or twisting on a plane gi i
pendix B models the develo g 8 B
: pment, and clearly rolling a sphere o
an equator gives a pure translation as its development. g o alonOg

§5. Flat Cartan Geometries and Uniformization

In thi . . .
;ot;ftsecn;n \lavle slgldy in detail the question, when is a connected Cartan
Ty a locally Klein geometry? Locall ion i
7 y, the only obstruction is the obvi
ous one: the curvature. This is our fir: ing global
. st result. For the corr di
statement, there are two reason o o
s why mere flatness is not enough. Fi
° : ' gh. First, an
pen subset of a Klein geometry is flat but is not geometrically equivgmlen}‘;
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to a Klein geometry. The missing ingredient here is completeness. Second,
by Proposition 4.10, locally Klein geometries are geometrically orientable.
For these reasons the argument in the global case is more involved than the
local one and uses the “characterization of Lie groups” given in Chapter 3.

Theorem 5.1. Let M be a flat, effective Cartan geometry modeled on
(g,b) with group H. Then each point of M has a neighborhood U which
is canonically isomorphic as a Cartan geometry to an open subset of the
model Klein geometry G/H, where G is any Lie group realizing g.

Proof. Fix a point z € M. Let (U, 6) be a Cartan gauge on M, with U con-
nected, simply connected, and containing z. Flatness means the structural
equation holds, so by the fundamental theorem of calculus, there is a map
f:U — G, unique up to left translation, satisfying f*(wg) = 0. Fix u € U,
and set g = f(u), ¢ = 7(g). Then we have the following commutative

diagram.

TL(gH) = h

n

L(G) _(a_g);g) g

V ln* g proj

LU T(GH) Eg/

By the regularity condition on 9, it follows that the composite
proj 0, = proj wa*u = (Pg(ﬂ'f)*u:Tu(U) - g/h

is an isomorphism. Thus, the map p =7 f:U — G/H isan immersion, and

hence a local diffeomorphism.
Shrinking U if necessary, we get an injective immersion 1:U — V' C G/H

onto an open set V. Clearly, this is a geometrical isomorphism onto its
image since 0:V — G defined by o(t(v)) = f(v) is a section, over V, of
G — G/H, and the gauge o” (wg) on G/H pulls back under ¢ to yield
(0% (we)) = (01)*(wa) = f*(we) =0 u

We also have the following companion result giving uniqueness.

Theorem 5.2. Let U C G/H be a connected and simply connected open
subset and let (P,w) be the Cartan geometry induced on U by this inclu-
sion. Let f:U — G/H be a local geometric isomorphism. Then there is an

element g € G such that f(z) = g forallz €U.

Proof. Let (Pf,wy) be the Cartan geometry on U induced by f. We have
the following commutative diagrams.
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N =y

N =1

f

G/H

f

L
c G/H

QL — N

f
c

Q —

Since. f is a local geometric isomorphism, there is a bundle map k: P — Ps
covering the identity map on U and such that k*w; = w. Then

Fwe =w = k*ws = k* ffug = (k) we

so that b'y Theorem 3.5.2, ¢ and f k differ by left translation by an element
g € G. Since k covers the identity, it follows that f(z) = gz for all z € U.
|

Geometrically Oriented, Complete, Flat Cartan Geometries

Now we pass to a study of geometrically oriented, complete, flat Cartan
geometries. Every locally Klein geometry I' \ G/H is not only flat in its
canonical Cartan structure but is complete since the w-constant vector
ﬁelds on G are just the left-invariant vector fields which are complete. It
is also geometrically oriented by Proposition 4.10. Our aim is to show the
converse, namely that every geometrically oriented, complete, flat Cartan
geometry arises in this way.

The following theorem generalizes results found, for example, in [J.H.C
Whitehead, 1932] and [C. Ehresmann, 1936]. ’ S

Theorem 5.3. Let £ = (P,w) be a complete, flat, connected, geometrically
oriented Cartan geometry, with model (g,h) and group H, on a manifold
M. Then there is a connected Lie group G with Lie algebra g containing
H as a closed subgroup and a subgroup I' C G such that (T'\ G,wnr\q)
is a locally Klein geometry on I' \ G/H and such that £ is geome,trz'cc\zlly
isomorphic to it. In particular, M =T \ G/H.

Proof. Let m: Go — P denote the universal cover of P, and fix e € Gg. Let
g T m(e) € P. Theorem 3.8.7 applies to give us the following two pieces of
ata:

(a) there i§ a unique Lie group structure on Gy with Lie algebra g such
that e is the identity and 7*(w) = wg,;

(b) the group of covering transformations of m: Gy — P is a subgroup
I'p C Go acting on Gg by left translations. Thus, P = I'g \ Gp.

Using this data, we define K = | {ke 7 Y(oh) | Ad(k
X = Ad(h)}.
are going to show that heH (ph) | Ad(k) (h)}. We
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(i) K is a closed subgroup of Gy (see steps 2 and 3 below),

(ii) the map ¢: K — H defined by 7(k) = po(k) is a covering epimor-
phism of Lie groups (step 4),

(iii) the kernel of ¢ is a normal subgroup Z of Go and To N K = Z (step
6).

In the presence of these three facts, we can set G = Go /Z, T =To/Z.

Then H = K/Z C G is a closed subgroup, P = Tg\ Go =T \ G, and

w = wr\g- Thus, § is geometrically isomorphic to (T'\ G,wr\g) and, by

Lemma 4.3.12, T" acts as a group of covering transformations on the space

G/H with quotient M. Now we proceed to verify (i), (ii), and (iii).

Step 1. ¢ is surjective.

Proof of step 1: We show that for every h € H there is an element k €
n~1(ph) C Go such that Ad(k) = Ad(h). It will follow that k € K and,
since 7(k) = ph, ¢(k) = h.

Since the geometry is geometrically oriented, we may choose a path
X1,0,1 — P,p,ph such that it develops on Gl(g), via ad(w), to a path
\1,0,1— Gl(g), I, Ad(h). The lift of A to Go joins the identity to some
element k on Go by a path whose development on Gl(g), via ad(wg), s,
since m* (w) = wg, once again A. But by Corollary 3.5.3, this development
is just the restriction to the path of the adjoint representation of Go. Thus
Ad(k) = Ad(h).

Step 2. K is a union of path components of 7~!(pH) and hence is a
closed submanifold of Go.

Proof of Step 2: Suppose that k and [ lie in the same path component of
7~1(pH). It is sufficient to show that k € K=leK.

Write 7(k) = ph and n(l) = phs, where h,s € H. Then there is a path &
on m~(pH) joining k to ! and covering a path o on P joining ph and phs.
Since k € K, there is a path X\ on Gy from e to k covering a path X\ from p
to ph on P such that Ad(k) = Ad(h). Then the path A& joins e to [ and
projects to a path Axo on P joining p to phs. This path develops (see the
figure below) via ad(w) to a path joining e to Ad(hs) on Gl(g). Then, as
in step 1, Ad(l) = Ad(hs), and so [ € K.

i phs Ad(R)  Ad(R)Ad(s)
oh Ad(h)B
A Ad(s)
» € 5 Gl(g)
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1.7‘inally, we note that since pH C P is a regular submanifold and 7: Gg —
P is a covering space, it follows that 7—}(pH) is a regular submanifold of
Go. Thus K, being a union of some of the components of 7=!(pH), is also
a regular submanifold and hence is closed. ’

Step 8. K is a group and K = {g € G | R, = Ry, for
~ is = some h € H},
Ry: P — P is induced by R,: Go — Go. ? " by where

Proof of Step 3: First we show the inclusion C.
Let k € K. Since P = I'y\ Go, and the left and right actions commute, it

follows that Ry: G — G induces a map on P, which we denote by Ry: P —
P. Now "

™ (Rjw) = Rim*w = Rjwg, = Ad(k™Ywg, = Ad(h™"we,
= Ad(h " YH)7r*w = 7*(Ad(h~)w) = T (Rjw).

Since ‘7r* is injective, it follows that Rjw = Rjw, so that Ry and Rj, are
equal if they agree at a single point. But we also know that Rxp = m(Rxe) =
n(k) = ph = Ryp, so that Ry = Ry, on P. e
Now we show the inclusion D.
Let g satisfy Rg = R}, for some h € H. On the one hand,

Ad(g " )wg, = Rym*'w = m*Rjw = " Rjw = r*Ad(h™Hw = Ad(h ™ Ywg,
and hence Ad(g) = Ad(h). On the other hand,

Ry, = R, = Ryp = Rup = 7(eg) = ph = g € n~ ' (ph).

Thus, g € K.

Now we show that K is a group. Clearly, e € K. If k € K, then Ry = Ry,
fqr some h € H, so Rg-1 = R;' = R;' = R,-1 and hence k™! € K.
Finally, if k1, k2 € K, then Rg, = Rp,, h;y € H for i = 1,2. Thus, Ry,k, =
Ri, Re, = Ri, Rn, = Ra,n, and hence kiks € K. o

Step 4. For all elements k € K and g € Gy, w(gk) = w(g)¢(k). Also

¢: K — H is a covering epimorphi i i
: phism. In particular, the L
is the subalgebra h C g. ? ¢ Lic algebra of K

r}r’ro?f of Step 4: We have m(gk) = n(Rkg) = Rxm(g) = Rupm(g) = 7(g)h.
fa.km% g;- e, we see by definition that ¢(k) = h and we have verified the
ormula. Now we apply this formula to show that ¢ i i

PR A at ¢ is a homomorphism.

m(e)p(kikz) = m(kika) = m(k1)p(k2) = m(e)p(k1)p(k2).
Thus, ¢(k1k2) = ¢(k1)d(k2).

mece m: Gy — P is a covering map and ¢ is the restriction of 7 to a union
of path components over pH (~ H), it follows that ¢ is also a covering map.
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Step 5. ToNK = {y €T | Ad(7) = e}.
-1

Proof of Step 5: v € T'o = r(ye) = w(e) = p. Thus, Ty Cc 7 (p) C
7~ 1(pH). Hence vy € To N K >y € I'g and Ad(y) =e.

Step 6. Let Z be the kernel of ¢. Then Z = I'o N K and is a normal
subgroup of Go.
Proof of Step 6: Consider the right action of z € Z on To\ GO_' This action
is of course trivial, but it means that for each g € Gp there is an element
~ € T'g such that vg = gz. This shows that gzg™* ElI‘g for all g € Go. Let N
be the subgroup of G generated by the set {gzg'. |z€ Z,9€Go} C F9.
Since this generating set is stable under conjug?mtlo'n by elements of G, it
follows that N is a normal subgroup of G that lies in I'p.

We have Z C N C Tp. Also, for z € Z,

Ad(gzg™?) = Ad(g)Ad(2)Ad(g™")
= Ad(g)Ad(¢™")

= €.

Sobystep5,NCI‘oﬂK.HenceZCNCFoﬂK. ~

On the other hand, let g € To N K. Then g € Ty = w(e) = 7(g) =
m(e)p(g). Thus, ¢(g) = e and hence g € ker ¢ = Z. It fqllows that‘l"gﬂK C
Zand ZC NcTonNnK C Z. Thus, 7 = N =Ty N K is normal in Go. B

If we have two locally Klein geometries (I';\G /H), j1= 1,2, for which th.e
subgroups T'j, j = 1,2, are conjugate in G, say ?Fl'c =Ty, then there és
a geometric isomorphism relating these geometries 1nduced' by‘ L.:G - G.
The following result shows that this is the only geometric isomorphism
between two such locally Klein geometries.

Proposition 5.4 (Geometric rgidity). If (I‘j_\ G,H ),' j= 1,'2, are twol
locally Klein geometries that are geometrically zsomomﬁzc in their canonica
structures as Cartan geometries modeled on the Klein geometry (G, H ),
then the subgroups I'1 and 'z are conjugate in G by some 'element ceqG
and the geometric isomorphism 1s induced by the left translation Lc: G— G.

Proof. Let m:G — G be the universal covering group, and consider the
following commutative diagram

2y =ficé — Goh=-1"M)
= I
lcG GoT,
v, Ln

LG —L\G
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where f is the H bundle map satisfying f*wr,\¢ = wr,\¢ and f is any lift
of f to the universal covers. Since wr,\¢ and wr,\¢ both lift to wz on G,
and f is just f locally, it follows that f *wa = wg and hence by Theorem

3.5.2, f is just left multiplication by some element ¢ € G.
For all 4; € I';, we have

momo f(1) = fomom(y1) = fomom(e) =momo f(e),

and so it follows that for all 7, € Iy, there is a 42 € I'y such that f(,) =
42 f(e). Recalling that f is left multiplication yields &y, = 42¢ or &y cle
Ty. Thus, éT4& ! C I'. The same argument applied to f~! yields the
reverse inclusion so that é['36~! = I's. Since the kernel of m:G — G is a
central subgroup Z and I';/Z = T, it follows that c['yc™! = Ty, where
c = 7(2). |

Moduli Space of Complete, Flat Geometries

Suppose that I' C G is a subgroup. It acts as a group of covering transfor-
mations on G/H if and only if the following two conditions hold.

(i) (Free action) For every g €T, g7 'T'gN H =e.

(ii) (Proper action) For every compact set K C G, {y € T' |y KN KH #
0} is finite.

In light of Theorems 5.3 and Proposition 5.4, we see that the “moduli
space” of geometric isomorphism classes of complete, flat Cartan geometries
modeled on a given Klein geometry (G, H) may be identified with the set
of G conjugacy classes of subgroups I' C G satisfying (i) and (ii).

§6. Cartan Space Forms

In this section we introduce and study Cartan geometries of constant curva-
ture. The possibility for the existence of nontrivial (i.e., nonflat) examples
of these is governed by the H module Hompg(A?(g/h),h), which depends
only on the model. If this module vanishes, there are no nontrivial examples
(cf. Exercise 6.7). A Cartan form is a complete, torsion free, geometrically
oriented, constant-curvature geometry, and our main result is that these
geometries are all locally Klein geometries of the form I'\ G’/ H, where the
Lie algebra of G’ may not be the model algebra.

Mutation

The appearance of G’ in the preceding description is the result of model
mutation. Mutation replaces a geometry modeled on (g,h) with group H
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by one modeled on (g’,h) with group H. We formulate the precise relation
we require for mutation between models in the following definition which
is essentially the same as Definition 4.3.8.

Definition 6.1. Let (g,h) and (g’,h) be two models with group H. A
mutation map is an Ad(H) module isomorphism A:g — g satisfying

(i) A I h= idh’

(i) for all u,v € g, [Mu), A(v)] = A([u,v]) mod b.

We say the model (g’, h) with group H is a mutant of the model (g, h) with
group H. *®

We mention that in [K. De Paepe, 1996] it is shown that, for primitive
models of higher order, mutations are always trivial in the sense that the
map ) is always a Lie algebra isomorphism. Thus, in the primitive case,
mutation is entirely a phenomenon of first-order geometries.

Example 6.2. Take H = SO,(R), h = 50,(R). Now define g~, g%, gt as

e
()
e{( )

These are all mutants of each other, since we may define

0 M. 4+ . 0 0 0 —v
g° =— g7 sending (v a7l a

veR",Aeb},

veR“,Aeb},

veR”,Aeh}.

and
02, g~ sendin 00 — 0 o
8 8 g v A v A)°
It is easily verified that these are mutation maps. *

Mutation of models gives rise to mutation of geometries. This is described
in the following result.

Proposition 6.3. Let M be a manifold and let £ = (P,w) be a Cartan
geometry on M modeled on (g,b) with group H. Let A:g — g’ be a mutation
of models, and set w' = Mw. Then & = (P,w’) is a Cartan geometry on M
modeled on (g',%) with group H. Moreover,

(i) the curvatures of these geometries are related by U = AQ+1 (o', w']—
Aw, w]),
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(ii) the geometry & is complete if and only if the geometry £ is complete.
Under the additional hypothesis that € is torsion free, we have
(iil) & is torsion free,

(iv) A induces a bijection

{[ Cg i) lis asubalgebra} - {[ cyd

ii)pct

Proof. Let us first verify that w’ is a Cartan connection. (We refer to
Definition 3.1, page 184.)

Properties (a) and (b) are clear.

(c) (i) Since A\:g — ¢’ is a linear isomorphism, it follows that w' =
w: Ty (P) — g2 is a linear isomorphism for each p € P.

(c) (ii) Using the fact that A\:g — g’ is an H module isomorphism, we
see that

i) [is a subalgebra
ii)hcl :

(Rp)*w' = (Rp)* w = A(Rp)*'w = AAd(h™Hw = Ad(h™)w'.

(c) (iii) If X € b, let X t be the corresponding vector field on P so
that w(X') = X. Since A | h = idy, it follows that XT = A(X)!. Thus,
WX = W'(XT) = d(XT) = MX).

(i) We calculate the curvature of the mutated geometry:

Q =dv' + %[u}',w’]
=d(dw) + %[w’,w']
= Adw) + 5[0/,
. (dw + %[w,w]) 3 (1]~ Ay
= X0+ ([0 '] — Ao,

(if) The equivalence of the completeness of the geometries §; and &3 is a
consequence of the fact that the wi—constant vector fields are the same as
the wo—constant fields.

(iii) By the definition of mutation, we have 3 ([w’,w']—Alw,w]) € b. Thus,
Qehes ehes el

(iv) Suppose that h C [ C g for some Lie subalgebra [ different from b

and g. Then, by Exercise 3.12(a), w™!(l) is an integrable distribution on
P. But then

@) TIAD) = Cw)THAD) = w (D),
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so that the same integrable distribution may be described as (w')_l()\([)).
Then b C A([) C ¢, and by Exercise 3.12(b) we see that A([) is a subalgebra.
Since A\:g — ¢’ is an isomorphism, it follows that it induces an injective

mapping

{[Cg

Finally, since A™!: g’ — g is also a model mutation, this inclusion must be
a bijection. m

i) lisa subalgebra}

i) hC I i)hcCl

i) lisa subalgebra} c {[ cg

Note that in mutating the model geometry, no information is lost. We
may read the mutation data “backwards” and so recover the original ge-
ometry. One may say that mutant geometries are the same geometry with
different presentations. The interest in mutation lies in the possibility of
changing, and perhaps simplifying, the curvature.

Mutation for Reductive Models

In the case of a reductive model, the notion of mutation takes on a special
significance, which can already be seen in Example 6.2 involving reductive
models. Recall that a Cartan geometry with model pair (g, §) is reductive
if there is an H module decomposition g = h @ p.

Lemma 6.4. Let (g,h) be a reductive model pair, with group H. Write the
H module decomposition as g = b @ p. Then there is, up to isomorphism,
a unique mutant (g',h) with g’ =h @ p’ and [p’,p'] = 0.

Proof. Ezistence. Set p’ = p as an h (and H) module but with multiplica-

tion on p’ given by [p/,p’] = 0. It is then easy to verify that g’ = h @ p’ is

a Lie algebra and that the canonical map g — ¢’ is a mutation.
Uniqueness. This part is easy. ]

Since, in the reductive case, we can always find a mutation such that
[p,p] = 0, and since we lose no information by passing to a mutation,
it follows that for reductive Cartan geometries we exclude nothing if we
assume that [p,p] = 0. This allows us to completely forget about the larger
Lie algebra g and retain only the subalgebra h and the H module p.

If, in addition to being reductive, the geometry is of first order (i.e.,
Ad: H — Gl(g/h) is injective, cf. Definition 3.20), we may use the iso-
morphism ¢,: T(M) — g/h = p to reinterpret the bundle P as a bundle
of frames (cf. Exercise 3.21) with group H C Gl,(R), and we can forget
about p too. This leads to the notion of an Ehresmann connection (see also
Appendix A).
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Uniformization of Constant-Curvature Geometries

Constant-curvature Cartan geometries are generalizations of the classical
Riemannian space forms, namely, geometries of constant sectional curva-
ture that are, locally, Euclidean space, the round spheres, and hyperbolic
space. The generalization we consider includes, for example, products of
the classical space forms. The main point is that every constant-curvature
Cartan geometry is locally a mutation of a flat Cartan geometry. In partic-
ular, each of the three classical types of Riemannian space forms is locally
a mutation of each of the other two.

Definition 6.5. Let M be a connected manifold and let { = (P,w) be
a Cartan geometry on M modeled on (g,h) with group H. Let £ be the
curvature 2-form. We say that £ has constant curvature if Q,(X,,Yp) is
independent of p € P whenever the vector fields X and Y are w-constant
vector fields. A Cartan space form is a complete, torsion free, geometrically
oriented Cartan geometry of constant curvature. *®

The constant-curvature condition may also be expressed by saying that
the curvature function K: P — Hom(\2(g/h), h) is constant, since

Qp(wy ' (1), wp (v))
K(p) = constant < < is independent of p
for all u,v € g

& (P,w) has constant curvature.

This may be restated a bit more computationally as follows.

Lemma 6.6. Let M be a connected manifold and let € = (P,w) be a torsion
free Cartan geometry on M modeled on (g,h) with group H and curvature
2-form Q. Let {er} be a basis of b and let {e;} complete this to a basis of
g. Let 0; denote the e;th component of w with respect to this basis. Then
we may write Q@ = X;51a,10; A 0jer, where a;j; = —aj;1: P — R and

(P,w) has constant curvature < the functions a;j; are all constant.

Proof. It is clear (cf. Corollary 3.10) that (P,w) has constant curvature <>

Q,,(w;les,w;let) is independent of p for all 1 < s,t < n. But

-1 ~1 -1 —1
Qp(wy, "es,wp ") = Tijraijrdi A 6; (w'es,w™ "er)er
= Yijrai1(8is05t — 6itbjs)er

= Yr(astr — as1)er = 2Xagrer,

which finishes the proof. |
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The following exercise shows that the existence of nontrivial examples
of Cartan space forms modeled on the Klein pair (g,h) depends on the
nontriviality of Homg(A2(g/h), b).

Exercise 6.7. Suppose that Hompg(A\%(g/h),b) is trivial and that K is
constant along each fiber of P. Deduce that the geometry is flat (cf. Exercise
3.4.8). Q

The fundamental fact about the constant-curvature Cartan geometries is
that, at least locally, they are all mutations of flat geometries. The first step
toward proving this is to find the appropriate mutation of the Lie algebra

g.

Proposition 6.8. Let K € Hom()\%(g),h) be the (value of the) curva-
ture function of a torsion free, constant-curvature Cartan geometry, so
that K(g,h) = 0. Let ¢’ be g equipped with the multiplication given by
[u,v) = [u,v] — K(u,v). Then g’ is a Lie algebra, and for all u,v € g and
h € H, [Ad(h)u, Ad(h)v] = Ad(h)[u,v]'.

Proof. The bilinearity and skew symmetry of the bracket [, |’ are obvi-
ous, but we need to check the Jacobi identity, [[u,v],w]" + [[w,u],v] +
[[v,w]’,u]" = 0. Since [u,v]" = [u,v] — K (u,v), this reads, in terms of [, ],
as

[[U’?v] - K(u,'u),w] - K([u,v] - K(uvv)vw)

+ (cyclic permutations of u, v, and w) = 0. (6.9)

Now the bracket [ , | already satisfies the Jacobi identity. The terms
K(K(u,v),w) are of the form K(h,g) and so vanish by Corollary 3.10.
Thus, the Jacobi identity for |, ]’ is equivalent to the identity

—[K(u,v), w] — K([u,v],w) + (cyclic permutations of u, v, and w) = 0.
(6.10)
We show this is a consequence of the Bianchi identity dQ = [Q,w] as
follows. Let Xy, X1, X2 be three w—constant vector fields on P. Then we
may explicitly calculate the two sides of the Bianchi identity

d(Xo, X1, X2) = [, w](Xo, X1, X2).

By Exercise 1.5.16, the left-hand side is

2
> (-DX(UXo, .., Xi, .., X2))
=0

+ ) (FD)MX, X5), X, Xy Xy Xa).
0<i<5<2
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The first sum vanishes by the constancy of €2 on w—constant vector fields,
and the second sum is simply

—Q([Xo, X1], X2) + Q([Xo, X2], X1) — Q([X1, X2], Xo).
The right-hand side is

> (F)7Xo0) Xo(1)) w(Xo@))
(2,1) shufffles o

= [Q(Xo, X1),w(X2)] — [ X0, X2), w(X1)] + [QAX1, X2),w(Xo)]-

Thus the Bianchi identity reduces to

Q([X07 X1]7 Xz) + [Q(Xo, Xl)vw(Xz)]

+ (cyclic permutations of 0, 1, and 2) = 0. (6.11)

Set w(Xo) = u, w(X1) = v, w(X2) = w. Calculating again, we have

dw(Xo, X1) = Xo(w(X1)) — X1 (w(Xo)) — w([Xo, X1]

=0-0- Ld([Xo,Xl]),

and so

K(’U,,'U) = Q(X()?Xl) = dw(X07X1) + [w(XO)vw(Xl)]

= —w([Xo, X1]) + [u,v].

Thus, Q([Xo, X1], X2) = K(w([Xo, X1]), w(X2)) = K([u,v] - K(u,v),w) =
K ([u,v],w). This identity allows us to rewrite Eq. (6.11) in terms of K,
yielding

K([u,v],w) + [K(u,v),w] + (cyclic permutations of u, v, and w) = 0,

which is exactly the identity in Eq. (6.10) required of [, |’ for it to satisfy
the Jacobi identity.

Finally, we show [Ad(h)u, Ad(h)v]’ = Ad(h)[u,v]’. Recall Lemma 3.23,
which says that

K(Ad(h)u,Ad(h)v) = Ad(h)K (u,v)
Thus

[Ad(R)u, Ad(R)o]' = [Ad(R)u, Ad(h)v] — K (Ad(h)u, Ad(h)v)
— Ad(h)[u,v] — Ad(R)K (u, )
= Ad(h)[u,v]". [ ]

The following result describes all the Cartan space forms with a con-
nected model group H.
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Theorem 6.12. Let M be a connected manifold and let £ = (P,w) be a
Cartan space form on M modeled on (g,h) with group H. Suppose one of
the following conditions holds.?!

(i) H is connected.
(ii) M is simply connected.

Then € is a mutation of a locally Klein geometry T'\ G'/H, where G’ has
Lie algebra g’ as described in Proposition 6.8.

Proof. The “identity” map t:g — g’ is a linear isomorphism. Since
Kb, g) = 0, the restriction of ¢ to b is an isomorphism of Lie algebras.
This same identity also ensures that [u,v]’ = [u,v] whenever u € b. It fol-
lows that the identity map t:g — g’ commutes with the adjoint action of
the identity component H, C H. By model mutation we may regard M
as equipped with the geometry of vanishing curvature modeled on (g’,h)
with group H. Either of conditions (i) or (ii) implies that the geometry
is geometrically oriented. Then the classification of complete, flat geome-
tries, Theorem 5.3, applies to tell us that £ is locally Klein and of the form
r'\G'/H. |

Exercise 6.13. (a) Suppose that (P,w) is a constant-curvature Cartan
geometry, and let (U, ) be a compatible gauge with curvature ©. Let e;, 1 <
i < n, be a fixed basis for g/h and let e;(z) € T,,(U) be the corresponding
smooth vector fields on U defined by e; = (e;(z)), 1 < i < n. Show that

(i) for each 1 <1i,j < m, O(ei(x),e;(x)) is independent of z € U;
(ii) for any h € H and any z € U,

Ad(R)O, (07 (w), 01 (v)) = O, (871 (Ad(R), u), 0" (Ad(h)v)).

[Hint for (ii): Relate Qp(w, ! (u),w, ! (v)) and Qph(w;hl(u),w;hl(v))].

(b) Show that when the adjoint representation Ad: H — End(g/h) is
faithful, then the converse of (a) holds. That is, in this case, show that if
a Cartan geometry (P,w) is covered by gauges satisfying (i) and (ii), then
it must have constant curvature. [Hint: Show first that if (i) and (ii) hold
for one gauge and one basis {e;}, they hold for all equivalent gauges and
all bases.] Qa

211 do not know whether or not the property of being geometrically orientable
is unchanged under mutation. If it is, then Theorem 6.12 is true without the
necessity of these conditions.
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§7. Symmetric Spaces

One of the classical definitions of a Riemannian locally symmetric space
is a Riemannian geometry in which the curvature is covariant constant.
This definition continues to make sense for any reductive Cartan geometry
using the covariant derivative of Definition 3.43. As usual, for reductive
geometries we assume that g = h @ p is a fixed H module decomposition.

Definition 7.1. Let M be a reductive Cartan geometry modeled on (g, h)
with group H. M is called a locally symmetric Cartan geometry if the
curvature function K satisfies D, K = 0. B

The following result shows that the locally symmetric spaces are “ge-
ometries extended from flat geometries.”

Proposition 7.2. Let M be a locally symmetric Cartan geometry (P,w)
modeled on (g,h) with group H. Then there is a reduction of the bundle
P to a connected principal bundle P, with group Hy C H such that (P,
w1 =w | P) is a constant-curvature Cartan geometry modeled on the Klein
g)air (b; ® P, h1) with group Hyi. Moreover, if (P,w) is complete, then so is
Pl,wl .

Proof. Fix pg € P,let P, = {p € P | K(p) = K(po)}, and let Hy =
{he H|h-K(po)=K(po)}. Then Hy is a closed subgroup of H. Let ho
be its Lie algebra. Since K is constant along horizontal paths in P (i.e.,
paths tangent to the distribution w=1(p)) and horizontal paths can join
any point to any fiber, the function K takes on the value K(pg) on each
fiber. Since K(ph) = h~! - K(p), K is equivariant. Thus, by Proposition
4.2.14, Hy — Py — M is a principal bundle. The fact that K is constant
along paths in P tangent to the distribution w™!(p) implies that, for each
p € P, we have wy(Tp(P)) D p. Since the fiber of Py is Hp, it follows
that wp(Tp(P)) D ho. The equality dim Py = dim M + dim Hy implies
wp(Tp(Po)) = ho @ p. Thus, wo = w | Py is an (ho @ p)-valued 1-form
on Py. Since the form w:T,(P) — g satisfies conditions (i), (ii), and (iii)
of Definition 3.1, it follows that wo does as well, and so it is a Cartan
connection on Fy. Let us calculate the curvature of this geometry. It is

1 1
Qo = dwg + 5[0.)0,(410] = <dw+ 5[0.2,(41]) | Po=Q | P.

Since the curvature function Ko = K | Py = constant, the geometry
(Py,wp) has constant curvature.

Finally, fix a component P; of Py and an element p; € P, and set
H, = {h € H| pyh € P1}. By Exercise 1.3.23, H; has codimension zero
in H and H; — P, — M is a principal H; bundle. Setting w; = wq | P,
we see that (Pp,w;) is a connected, constant-curvature Cartan geometry
on M modeled on (h; @ p,h1) with group H;.
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The completeness of P implies the completeness of Fo since the wo—
constant vector fields on Py are restrictions of w—constant vector fields on

P |

Corollary 7.3. Let £ = (P,w) be a complete, reductive, locally symmetric
Cartan geometry on M modeled on (g,b) with group H. If M is conneqted
and simply connected, then it has the form G1 /H1, where Hy C Hp is a
closed subgroup with Lie algebra b1 and Gy is a Lie group with Lie algebra
ho @ p, with bracket given by [u,v) = [u,v] — Ko(u,v).

Proof. The long, exact homotopy sequence

o= (M) = mo(Hp) = mo(P1) — - -
N—— SN——
0 0
shows that H; is connected. The corollary follows by applying Theorem
6.12 to the conclusion of Proposition 7.2. ]

6

Riemannian Geometry

A Riemannian geometry consists of a smooth manifold M together with
a Riemannian metric, that is, a smooth function gpr: T(M) — R, which
restricts to a positive, definite, quadratic form on each tangent space.l
Euclidean geometry of dimension n, denoted by E™, consists of the pair
(R™, (—=,~)), where (—, —) is the usual inner product on R™. It may be
regarded as the simplest example of a Riemannian geometry by defining

qT(M) =R"xR"—=R by q(.’L‘,'U) = (v, v).

This example makes it clear how Riemannian geometry is a generalization
of Euclidean geometry.

A deeper study of Riemannian geometry shows that more structure can
be canonically associated to a manifold with a Riemannian metric, includ-
ing the bundle of orthonormal frames along with its tautological 1-forms
and the Levi-Civita connection. This construction is reviewed in §3. The
extra canonical structure just mentioned determines a torsion free Cartan
geometry on M modeled on Euclidean space. Conversely, any Cartan ge-
ometry on M modeled on Euclidean space determines, up to a constant
scalar factor, a Riemannian metric on M. These facts provide a more pro-
found justification for regarding a Riemannian manifold as a generalization
of Euclidean space and show the equivalence between Riemann’s original
idea and Cartan’s version of the same thing.

'Riemann actually had something more general in mind. Cf. [S.-S. Chern,
1996).
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In §1 we study, in an ad hoc manner, the representation theory associated
to the model Euclidean space. In §2 we define the Cartan geometries mod-
eled on Euclidean space, giving a brief picture of the corresponding special
geometries and ending with a discussion of the geodesics. In §3 we show
how these geometries “geometrize” Riemannian metrics as described in the
preceding paragraph. In §4 we study some of the special geometries, the
Riemannian space forms. In §5 we pass to a study of subgeometries, sec-
ond fundamental form, Ehresmann connection on the normal bundle, and a
complete set of invariants for a submanifold. In §6 we apply these notions to
introduce isoparametric submanifolds of Riemannian space form. We end
that section by proving Cartan’s formula relating the principal curvatures
of an isoparametric hypersurface in a space form.

§1. The Model Euclidean Space

There are really two versions of Euclidean geometry, the oriented and the
unoriented models. We describe the unoriented version here; the oriented
one is obtained from it by replacing O, (R) by SO, (R). Let G = Eucn(R)
be the group of rigid motions of Euclidean n space. Let H = On(R) C G
denote the subgroup fixing the origin. In more detail,

G= {(11) g) € Mp(RIA€ On(R)},

H= {((1) g) € My (R) | A€ On(R)},

with Lie algebras g = eucp(R) and h = on(R) given by

o= {(0 f;) eMn+1(R>|A+At=0,veR"}y
b:{(g fl) eMn+1(R)|A+At=0}-

Definition 1.1. The group Euc,(R) = G is called the Euclidean group in
dimension n. The pair (G, H), with H =~ O, (R), described above is called
the Euclidean model dimension n. &*

The model geometry is reductive since the subalgebra h C g has an
Ad(H) invariant complement

p={(?) g) eMn+1(R)|v€R"}»

and so g = h @ p is an H module decomposition, and the adjoint action of
H on p = g/b is given by ad(A)v = Av. Let e; € p denote the standard
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basis and let e;; € h denote the unique elements satisfying ad(e;;)er =
Ojke; - (5,~k.ej such t.hat ad(epq) corresponds to e, ® e — eq ey ux:gierktll_e
f:anonlcal isomorphism End(g/h) =~ (g/h) ® (g/h)*. 1\?ote that {e;; | i < j
is the standard basis for b. K 7}
Tl'le structure of the H modules § and Hom(A\%(g/h),h) determine th
possible types of the (torsion free) special Cartan geom7etries modeled os

E)iezcise 1.2. Show that b is a simple Lie algebra for n # 4, and that for
n =4, h ~ 50(3) @ s0(3). [Hint: For n = 4, consider the matrices

01 0 0 0 01 0 0 0 0 1
-1 0 0 0 0 00 -1 0 0 10
00 0 1) |-100 0] {0 -10 0
0 0 -1 0 0 10 0 1 0 0 0
and

0 10 0 0 0 10 0 0 0 1
-10 0 0 0 0 0 1 0 0 -1 0

0 00 1) |-1 000 |0 10 of"
0 01 0 0 -1 00 10 0 0

It fo.llows from this exercise that for n # 4 there are no special t
.of torsion free Cartan geometry on M modeled on Euclideanps ace Zf'es
ing from the ideals of h. However, there is still the possibilitp of o
cial types of geometries arising from the decomposition of the Hy flp(la-
Hom(A?(g/h),h). Note that this module vanishes for n = 1. ot

Definition 1.3. The Ricci homomorphism is the composite mapping

Ricci : Hom(A\%(g/h), h) canggical M(g/h)* ®h
55 X2 (a/h)” ® End(g/9) - (a/h)" @ (9/h)",
where ¢(vi Av3 ® ) = v} ® (v3 0 @) — V3 ® (v} 0 ). ®
Proposition 1.4. Let n > 2.
(i) Ricci is an H module homomorphism satisfying
Ricci(ej Nej @ epg) = bjpe] ® €5 — §jqe; ® e — bipel @ el + bige} @ e

so that, in particular,

(a) wheni#k# j, Ricci(e} A e} ®ex;) = el ® e; + bijex ® ex.
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Moreover
(b) for n =2, Ricci is injective.
(c) for n > 2, Ricci is surjective.

(i) Let Hom(A\2(g/h),h)s C Hom(X2(g/h),h) denote the subspace of ele-
ments satisfying the “first Bianchi identity” given by:

¢ € Hom(X*(g/h),b)B #f and only if
SoesleWioq) A Va(@)s Vo) =0, for allvi,va,vs € a/h

(where As is the alternating group of order 3). Then Hom(A\%(g/h),h)B
is an H submodule of Hom(X(g/h),b)-
Moreover

(a) let p = Saijpee; N € ® €pg € Hom(A\%(g/h),h) where asjpq 15
skew symmetric in the first two and last two indices. Then

¢ € Hom(\?(g/h), h) B ¢ ijkgt+ajkiqTakije = 0 foralli,j,k,q

(b) for n =2, Hom(A\*(g/h).h)B = Hom(X?(g/h), h)
(c) forn>2, Ricci(Hom(X%(g/h),b)B) = S2(g/h)* (the symmetric
elements in (8/9)* ® (8/9)")-

(iii) Let n > 2 and set bi; = Yi<ken(€i N ek @ €kj €5 A e; ® eki),
1<1i,j<n. Then

Ricci(bij) = (n—2)(e; ®ej +€;® eX) + 26;;Xkek, ® ey

The elements b;; are linearly independent, and the vector space they
span is an H submodule R, C Hom(A\%(g/b),h)B. The Ricci homo-
morphism induces an isomorphism R, — S%(g/h)* and a canonical
H module decomposition into irreducible pieces

Hom(A\2(g/h),h)B ~ Bn @ Wn
where W,, = ker Ricci | Rn.

(iv) The submodule Homy (A%(g/h),h) C Hom(\?(g/h), b)s has dimension
1 and generator Lixe; A ey ® ki = 1%ibsi and its image in S*(g/h)*

is 3(3n — 4)Zke}, @ €.

(v) There is an H module decomposition Rn, = Ron ® Homy (A%(g/h),h)
corresponding under the Ricci homomorphism to the decomposition

S?(g/h)* = (Bi<kzner ® er) ®{we S?(g/h)* | Trace w = 0}.

e a8
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Prt?of. (1) We leave it to the reader to check that each of the maps com-
posing Ricci 15 an fI module homomorphism. Next, note that under Ricci.
the element e} A €] ® e,q is mapped according to ’

* * *
e; N€j ®epg — €] Ae; @ ad(epq)

* *

e Aej ® Ti(bgrep — Opieg)e;

— Siel (6qtep — i ®ef — Lie]
t J*( qtep — Opteg)e; ® e — Lie; (Ogrep — 6pteq)e; ® e}

— 5. o * £ % *
ip€i ® €q — Ojq€i ® €5 — bipej @ eg + bige] ® €,

an? ;nf particular,

a) for i # j = p # q, Ricci(e} Nel ®ejq) = e @ e + biqe €.

) aiz) fiir élO;(Q):2((1;r7b§\2b($ /h) = dimjl) = ]lqso th;t ei“i\ €3 gejf ise]clearly a
e et s L0 ,b) and, by the formula (a), Ricci(e} A el ® ea1) =
th Tormula for Fiei(s 65 & o) gvenm oy O
) ’(:2’ VTshg gc/obxtdition that ¢ € Hom()\2(g/h),h)p implies that for all

Zoeas Ad(h)[p(Ad(h™ voy A Ad(R™ )vp(z)), Ad(h ™ )p(3] = 0
which is
Boeas[Ad(h) (9(Ad(R™ vp(2))), Vo(z)) = 0
and so
Toeas[(Ad(h)p)(Vs(1) A Vo(2)), Va(z)] = 0.

Thus Ad(h)¢ € Hom(\?(g 4 _
Hom(\?(g/h), h). (8/h),b)B and so the latter is an H submodule of
(a) The condition that ¢ € Hom()\2(g/h,h)s may clearly be written as

z ) ) ) .
o€EA3 [‘P(eza(l) A 610(2)), ela(s)] = 07 for all 11,12, i3
which, since ; ) —

’ Py N €igezy) = 2%pq (@i, (1yi,(2ypq) €pg» DECOMES

0=2% .
o€ As,pq®s ; €r €4 = .
3,Pq a(l)la(2)pq[ Pq) 10(3)] 42(,@43,paza(l)ia(z)ia(a)PeP'

Since the e, are independent, this is equi ii
i , equivalent to (ii)(a).
(b) Let us fix i # k # j and note that by (ii)(a) )

1
* * 1
_ei /\ . * %* P %* * * *
5 er®erj+0er Nex®e;; 2ek/\ei ®ex; = e Aej®ej; € Hom(\*(g/h), b) 5.
Thus, for n = 2, the basis e} A e}
) ) 1 Aes ® ez for Hom(A? lies i
Hom(A%(g/h),h) which verifies (ii)(b). (/b)) fies n
(c) On the other hand, for n > 2 the formula in (i) verifies (ii)(b).

(ili) Again we leave it to the reader to veri i
( verify that R
Using the formula in (i)(a) we calculate ’ o A submodule
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Ricci(bij) = Ek#,jRicci(e’{ AN 6: ® ex; + 6; AN ei ® eki)

= Skzijle; ® € + e ®ej +26i5€; ® e)

_ [ Trriglef @i te;@e)) it

N 2Ek¢i(e’f Qe +er®@er) ifi=j

)(ef ®e; +e) ®ef) if’l:;é]:

2(n—1 e; ®e +22k¢,ek®ek ifi=j

{n—2 i®e; +e;Qe) ifis#j
=(n-

n—2)e ®e +2Ekek<§§>e,c ifi=j
2)(ef ®@ €} +ej ®ef) + 28;Tke) ® ek

It is clear from this formula that the elements Ricci(b;;), 4 < ,j < n are lin-
early independent and span the symmetric submodule S?(g/h)* C (g/ l)).* ®
(g/h)*. It follows immediately that the Ricci homomorphism induces an iso-
morphism R, — S%(g/h)* and that Hom(A?(g/h),h)s = R, ® Wy, is an
isomorphism of H modules. \

(iv) We refer to Exercise 3.4.8(c) for the proof that Homy(A*(g/h), ) has
dimension one with the given generator. It is clear that X;ze; A €} ® ex; =
%Zibii and, using the formula in (iii), it is easy to determine its image in
S2(g/bh)* is as stated.

(v) The decomposition

S*(9/h)* = (Z1ckener @ €f)
@ {w e S%(g/h)" | w = Syjaie; @ e with Bias =0}

is just the decomposition of n X n symmetric matrices as a sum of _m.ul~
tiples of the identity matrix and trace zero matrices. This decomposition
is clearly stable under conjugation by any orthogonal matrix. The first
summand is irreducible because its dimension is one. For the irreducibil-
ity of the second summation, see Exercise 1.6. Since the Ric'ci hf)mon.lor-
phism restricts to an isomorphism R, ~ S%(g/h)* that, by (iv), identifies
Homy (A\%(g/h), h) with (E1<k<nef ® ex), we may define Ry, to be the sub-
module of R, corresponding to the “trace zero” submodule of S?(g/h)*.

Then the decomposition R, ~ Homy(A%(g/h), ) @ Ron is clear. [ ]

Definition 1.5. The submodules of Hom(A?(g/h), h) described in Propo-
sition 1.4 have the following names:

(i) Hom(A?(g/h),h)p is the Bianchi submodule.
(ii) R, is the Ricci submodule.
(iii) W, is the Weyl submodule.

(iv) Ron is the traceless Ricci submodule.

(v) Homy(A?(g/b),b) is the scalar submodule. ®
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Exercise 1.6. Let SO,(R) act on the space of trace-free symmetric
n X n matrices Sym,(R)o by conjugation. Show that this representa-
tion is irreducible. [Hint: Suppose there is a nonzero subrepresentation
V C Sym,,(R)o. Each nonzero element of V is conjugate to a diagonal ma-
trix of the form diag(a, 8,...), where o # 3 and neither is zero. Then this
diagonal matrix is in turn conjugate to the same matrix with a and 8 in-
terchanged. The difference, which also lies in V, is a multiple of a matrix of
the form diag(1, —1,0,...,0). It then easily follows that V = Sym,,(R)o.]
CI

It is known that as an O,(R) module, W, is irreducible (cf. [I.M. Singer
and J.A. Thorpe, 1969]).

Exercise 1.7. Show that, as an SO, (R) module, W,, can decompose into
at most two submodules and, if it does so, these submodules are isomorphic

and will be interchanged by the action of any orientation-reversing element
of O, (R). Q

Note that whenn =4, Wy, = W+ ® W~ as an SO4(R) module (cf. [L.M.
Singer and J.A. Thorpe, 1969]). W, is irreducible as an SO,,(R) module for
n # 4. The existence of the decomposition Wy, = W+ @® W~ in dimension 4
is at the root of Donaldson’s important work relating differential geometry
to the structure of smooth four-dimensional manifolds (cf. [S. Donaldson
and P.B. Kronheimer, 1990]).

In summary, the decomposition into three irreducible O, (R.) modules

Hom()\*(g/h),h) s = Homy (A\(g/h),b) & Ry & W,

provides a corresponding decomposition of L € Hom(A?(g/h),h)p as L =
8(L)+ro(L)+W (L), where the notation is chosen so that s, 7, and W will
correspond to the scalar, traceless Ricci, and Weyl curvatures respectively.

We end this section with the following criterion for the equality of ele-
ments of Hom(A\?(g/h), h)s.

Proposition 1.8.
(i) ¢ € Hom(M\%(p),h)p satisfies
(ad(p(X NY))Z,W) = (ad(p(Z AW))X,Y) for all X,Y,Z,W € p.
(ii) Let p1,9p2 € Hom(A\%(p),h). Then

(ad(p1(v1 A v2))v1,v2) = (ad(p2(v1 A v2))v1, v2)

pr=v2< {for all vy, vy € p.

Proof. (i) This is a consequence of the Bianchi identity. Adding the equa-
tions
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(ad(p(X AY))Z, W) + (ad(p(Y A Z2)) X, W) + (ad(p(Z A X))Y,W) =0
—((ad(p(W A X))Y, Z) + (ad(p(X AY))W, Z) + (ad(p(Y AW))X,Z)) =0
—((ad(p(Z AW))X,Y) + (ad(p(W A X)NZ,Y) + (ad(p(X A Z))W,Y)) =0

(ad(p(Y A 2))W, X) + (ad(p(Z A W)Y, X) + (ad(p(WAY))Z,X)=0

and using the skew symmetry of (ad(p(X AY))Z, W) in X, Y and Z, W
yields

2(ad(p(X AY))Z,W) — 2(ad(p(Z AW))X,Y) =0 for all X,Y,Z,W € p.

(ii) It suffices to prove this result for the case 1 (= ¢ say) and @2 = 0.
Since => is automatic, we prove <. Suppose

(ad(p(v1 A v2))v1,v2) =0 for all vi,v2 €p. (%)
Then (ad(p(v1 A (v2 + v4)))v1,v2 + vy) = 0 for all vy,v2,v4 € p. SO by (x),
(ad(<p(v1 N ’l)2))’l)1,’U4> + (ad(<p(v1 N 1)4))111,’02) =0 forall v,v2,v4 €EP

or, by (i),
(ad(p(v1 Avz))v1,va) =0 for all v1,v2,v4 € p. (*x)

Thus, (ad(¢((v1 +v3) Av2))(v1 +w3),v4) = 0 for all vy, v2,v3,v4 €. So by
(%),

(ad(p(v1 A v2))vs, va) + (ad(p(vs A vo))v1,va) =0 for all vi,v2,v3,v4 €P

and so, by the Bianchi identity, (ad(¢(v1 A vg))va, vq) = 0 for all 'ul,vz,v:
vg € p. Thus, ¢ =0.

§2. Euclidean and Riemannian Geometry

Definition 2.1. Let M be a smooth manifold. A Euclidean gef)metry on
M is a Cartan geometry on M modeled on Euclidean space. A Riemannian
geometry? on M is a torsion free Euclidean geometry. *®

We continue the notation at the beginning of §1. Let us assume t.hat
(P,w) is a Euclidean geometry on M with model (g,b) and group H. Since
the Lie algebra g decomposes as an H module as g = h @ p, the Cartan
connection w: T'(P) — g and the curvature : A?%(P) — g decompose corre-
spondingly as w = wy @w, and Q = Oy & 2. These may also be expressed
as

20f course, this is not the usual definition of a Riemannian geometry, which
is a manifold together with a Riemnanian metric on it. The equivalence (up to
scale) of these definitions will be shown in §3.
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0 0 0 0
w—(wp w,,)_ Zwiez‘+ Z Wij€ij, 0rw_<(w,~) >,

1<i<n 1<i<j<n (wiz)
0 0 0 0
Q= (Qp Qb) = Z Qe; + Z Qijeij7 or {) = ((Qz) (QU)) .
1<i<n 1<i<j<n

Definition 2.2. In the case of a Riemannian geometry, the form wy is
called the Levi-Civita connection. The form w, has been called the solder
form. *

Exercise 2.3. Verify that the Levi-Civita connection on the principal bun-
dle P satisfies the following properties:

() Rhwy = Ad(h™!)wy;
(ii) wy(XT) = X for every X € . Q

The properties of wy given in this exercise were adopted by Ehresmann
as the definition of what is today called an Ehresmann connection on the
principal bundle P with any group as fiber.

Definition 2.4. Let H — P — M be an arbitrary principal bundle over
M and let h be the Lie algebra of H. An Ehresmann connection of P is an
h-valued 1-form + satisfying the conditions

() Riy = Ad(h~1)y, and
(ii) y(XT1) = X for every X € h.

The curvature of the Ehresmann connection -y is the two form dy + %['y, 5]

®

Ehresmann connections are studied in [S. Kobayashi and K. Nomizu,

1963] and enjoy wide usage since in important cases—Riemannian geome-

try, for example—all of the geometry may be simply expressed in terms of

an Ehresmann connection. See Appendix A for a discussion of Ehresmann
connections and their relationship with Cartan connections.

Special Geometries

We are going to study the most important case, the Riemannian
geometries® on M. Thus, we assume that Q, = 0 or, equivalently, 2; = 0,
1<i<n.

3The more general Euclidean geometries are apparently not very important.
The Lorentzian analog of the extreme case of a Euclidean geometry on a manifold
M with Qf = 0 was investigated by Einstein from 1929-1932 in the hope that a
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The Bianchi identity is dQ = [Q,w] or

(g d3h>:[<8 52!))’(:’):: “(’)b)]:(ﬂb(/)\wp [Qb?%])'

This identity decomposes into
(first Bianchi identity) 0= Qy Aw, or 0=3 .8 Awj,
(second Bianchi identity) dQy = [Qy,wy], or
d%; = > (ke N wij — wik A Q).
The curvature function K: P — Hom(A?(p), h) is defined by
K(p)(v1,v2) = Qp(w;l(vl),w;l(vg)) for vi,v2 € p.

Writing € = Zxaijuwk A wy (which we may do since €2 is semibasic),
the first Bianchi identity becomes 0 = ¥ xi0ijkiwe A wi A wj, OF @ik +
aikij +aijr = 0 for all 4, 5, k, I. Thus K takes values in Hom(A\?(p),h)s. It
follows from the results of §1 that in a Riemannian geometry the curvature
function decomposes as

K = s(K) +ro(K) + W(K).

Table 2.5 lists the usual terminology.

TABLE 2.5
s(K) ro(K) s(K) +ro(K) W(K)
scalar curvature | traceless Ricci | Ricci curvature | Weyl curvature
curvature
W(K)=ro(K)=0 W(K)=0 ro(K) =0
constant curvature conformally flat Einstein
if n > 2 (cf. §4) (cf. Theorem 7.3.9) | manifold

Geodesics

The notion of a straight line in Euclidean space immediately extends to
the notion of a geodesic in a Riemannian manifold as follows.

Definition 2.6. A geodesic in a Riemannian manifold M is a curve on M
whose development in Euclidean space is a straight line. ®

unified field theory might be based on it [E. Cartan and A. Einstein, 1979]. Since
the holonomy of such a geometry is purely translational, and the translations form
a normal subgroup of all the group of all motions, there is an absolute parallelism
on M in the sense that there is a canonical trivialization of the tangent bundle
of M inducing isometries between the tangent spaces at any two points of M.
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Note that we speak here of an unparametrized geodesic. One may of
course choose the arclength parameterization for a geodesic, which is also
the parameterization by the arclength of the development.

Proposition 2.7. Let (U,0) be a Riemannian gauge on M. Let I denote
the interval (a,b). Then the geodesics c:1 — M are the solutions of the
ODE.

0:(¢)- + Py (¢
%z... (—)oj—u, whereP Z 92](’”

) 1<j<n

Proof. We must show that the given differential equation is a necessary
and sufficient condition for the regular curve c(t) to develop to a straight
line in the model space R™. Consider the associated function 6(¢): I — g,
which develops to give a curve on G

¢l,a— G,e

satisfying wg(¢(t)) = 0(¢(t)). Now the projection of this curve to the model
space R™ is &(t)eg, where eg € R™"!. Then ¢(t)eo lies in a straight-line
segment in R"™ if and only if ¢(t)eg and ¢(t)eg are linearly dependent. Since
c(t) is regular, it is a geodesic if and only if there is a function A(t) such

that éeg = Aéeg or, equlvalently, ¢ léeg = Né~! éeg.

But we have ¢~!¢ = wg(¢) = 0(¢). Since (¢71) = —é 1éé!, we also
have

0(¢) = —é'ee e+ 1= —0(e)? + &t

With these identities, the equation for geodesics becomes 6(¢) ey +

6(¢)%eo = A0(¢)eo. If the gauge is written as

(0 0
1= (o 0,):

the geodesic equation may be expressed as

0:(€) + X 1< j<n 033 (6)05(¢)
0:(¢)

=A fori=1,...,n. [ |

Exercise 2.8. Show that the equations for a geodesic parametrized by
arclength are 0;(¢) + P,(¢) =0,1 <i < n. Q

§3. The Equivalence Problem for Riemannian
Metrics

We begin with the classical definition of a Riemannian metric.
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Definition 3.1. A Riemannian metric on a manifold M is a smooth func-
tion qpr: T(M) — R whose restrictions ¢;:T;(M) — R are all nondegen-
erate quadratic forms. ®

What is the relation between this notion and that of a Riemannian geom-
etry as given in Definition 2.17 It turns out that these two notions are, up
to a constant scale factor, the same. The following proposition shows that a
Euclidean geometry on a manifold always determines a Riemannian metric
up to scale. The converse will be treated in Theorem 3.4. Taken together,
these results “geometrize” or “solve the equivalence problem” for Rieman-
nian metrics in the sense that they show that two manifolds equipped with
Riemannian metrics are isometric up to scale if and only if the associated
Riemannian geometries are geometrically isomorphic.

Proposition 3.2. A Riemannian geometry on M determines a Rieman-
nian metric on M up to constant scale factor.

Proof. As we noted in §1, the adjoint action of H = SO, (R) on g induces
the standard action on g/h =~ R" given by ad(A)v = Av. This action
preserves the standard quadratic form g on g/h, and in fact ¢ is, up to
scale, the only quadratic form on g/h preserved by H. We may use the
isomorphisms ¢,: T;(M) — g/b (where p € 7~ !(z)) to transport ¢ to a
quadratic form g, on T(M) defined by ¢,(v) = q(¢p(v)). Since ppn =
Ad(h~ 1)y, it follows that

apn(v) = q(pa(v)) = q(Ad(R™Hp(v)) = q(pp(v)) = gp(v).

Thus, the quadratic form ¢, on T;(M) is independent of the choice of
p € (), and we have found a canonical (up-to-scale) Riemannian metric
gy on M. To see that gps is smooth, consider the following diagrams.

T(P)—2» g T(P) -2 g
w| =l ]
M) 2y gh ) gh

SEOTNT

FIGURES 3.3(a) and (b)

The diagram on the left commutes by the definition of g, and of ¢,, and it
implies the commutativity of the diagram on the right. However, the upper
composite T(P) — R in the diagram on the right is clearly smooth, and
since 7, is a submersion, it follows that gas is smooth. |
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The proof of the converse of Proposition 3.2 depends on the following
lemma, which will also be useful in other contexts.

Cartan’s Lemma 3.4. (a) Let V' be an n-dimensional vector space, and let
6; € V*,i=1,...,n, be a basis. Let pu; € \2(V*),i=1,...,n, be arbitrary.
Then there exists a unique collection of elements O ; €V*,4,5=1,...,n
satisfying

(i) aij + 0_7',' =0,
(ii) i + Ejeij A 0j =0.

(b) Suppose that ; € A*(U), where U is some open set in R™, and that

wi € A%(U). Then the forms 0;; guaranteed by the lemma are smooth, that
is, 05 € Al(U)

Proof. (a) Fxistence. Write u; = Z].’k A;jkb; A Ok, where we may assume
Aijk + Aik; = 0, so the As are uniquely determined. Set

i = — Z(Ajik + Aikj — Akji)Ok
3

Then

(i) Oij + 0ji = =k (Ajir + Airj — Arji + Aijk + Ajri — Akij)0x =0,
(ii) Ejeij A 9]' =S —ijAiijk N 9j — Ejk(Ajik — Akji)ek A 9j

= —p; — Bj<k(Ajik — Akji — Akij + Ajri)0x N 6

= _ll'i'

Uniqueness. If there were two sets of 1-forms satisfying (i) and (i),
their differences 7;; would satisfy (i) and (i) with p; = 0. Writing
Yij = Lk BijkOk, (i) implies By, + Bj;x = 0 and (ii) 1mphes 0=2%;v1;N0; =
E]sz]kek /\9 = ZJ<k( ik — ,,U)Gk /\937 so Bjj, = zk_; But skew sym-
metry in the ﬁrst two indices together with symmetry in the last two indices
imply that all the Bs vanish.

(b) This is automatic from the formula for 6;; appearing in the proof of
(a). ]

We apply this lemma to obtain the next result.

Theorem 3.5. Let (M, g) be a smooth manifold equipped with a Rieman-
nian metric g. There is ezactly one torsion free Cartan geometry on M
whose associated metric is, up to scale, g.

Proof. Let e(z) = (e1(z), e2(z),...,en(z)) be any choice of orthonormal
frame field on an open set U C M, and let 6y, ...,0, € A*(U) be the dual
1-forms. Lemma 3.4 assures us that there are unique forms (6;;) on U such
that d(6;) + (0;;) A (6;) = 0. We set
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(0 O 1
9’(&- 0,~,->€A(U’9)'

Thus, 9 is a g-valued 1-form on U, and since e(z) is a frame, 6 has the
property that the composite

T, (U) 2= g =% g/h

is an isomorphism. Thus, 6 is a Cartan gauge. It is clear that the Rieman-
nian metric induced on U from the standard Euclidean metric on g /b is the
original metric g | U. The whole of M is covered by such Cartan gauges, and
it remains only to show that a different choice of orthonormal frame fields
yields an equivalent gauge. Suppose that f (z) = (fi(z), fo(z),.., falz))
is another orthonormal frame field with dual 1-forms ¥1,...,%n € AY(D).
Now the two frame fields must be related by an orthogonal transformation
h:U — O(n), so that fi(z) = E;hije;, and ¥i(z) = ¥;h;;0;. But under the
change of gauge h:U — O(n), we have

6 =, Ad(h™1)0 + h*wy

-GGG )6
B (h—lown 2>=<3,~ 2)’

and since this new gauge must also be torsion free, by the Cartan lemma
it must be the unique torsion free gauge corresponding to the coframe
¥1,...,¥n. Thus, 6 and ¢ are gauge equivalent. In this way we have con-
structed a Riemannian geometry on M whose associated Riemannian met-
ric is, up to scale, g. Moreover, the construction shows that any Riemannian
gauge whose associated metric is g will be gauge equivalent to the ones con-
structed above. |

Exercise 3.6. Show that the bundle P associated to the Cartan geometry
described in the proof of Theorem 3.5 may be identified, with the aid of
the isomorphisms ¢p: Ty;(M) — p, with the O,(R) bundle of orthonormal
frames on M. If P is regarded as the bundle of orthonormal frames on M,
show that the solder form w, is determined by P alone. (For this reason,
the analog of w, on the bundle of orthonormal frames is sometimes referred

to as the tautological form.) Cf. also Exercise 5.3.21 and §2 of Appendix A.
a

Exercise 3.7. Let (U,z) be a coordinate neighborhood in a Riemannian
geometry, and suppose that in this coordinate system

g= Z g,;jd.rz' ® diL‘j.
1<i,j<n
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Choosing an orthonormal frame field (e1, €2, ...,e,) on U determines the
dual coframe field (61, 62,...,6,). Let

0=0,+06, € AL(U,g),

0 0
9":(9,- 0) and "b:(g 99)’
ij

be the corresponding unique torsion free gauge on U guaranteed by Theo-
rem 3.5. Recall that the covariant derivative Dy X is determined by

where

Op(DxY) = Xz (05(Y)) + [65(X), 0,(Y)]
(cf. Proposition 5.3.49).
(a) Show that Dxe; = 21<k<n Ori(X)ex.

(b) Show that X(9(Y,2)) = 9(DxY, Z)+g(Y, Dx Z). [Hint: Use the fact
that the linear map 6,:T,(U) — p is an isometry to write

9(DxY,Z) = X (6,(Y)) - 0,(Z) + [65(X), 0(Y)] - 65(2),
and then use the skew symmetry of 6y (X).]

(c) Writing Dp,8; = lekﬁn %lg.ak, where 0; = 9/0zs, 1 < s < n,
calculate 8xg(0;, 9;) in terms of the s using the formula in (b). Show

that
ho_ kh 1
W= D 075Gk + gkis — Gian}y
1<k<n
where g;x ; = 0;9;k, and so forth. 0

§4. Riemannian Space Forms

0. Our ﬂrst aim is to justify the terminology in Table 2.5, referring to these
geometries as having constant sectional curvature. In these geometries the
curvature function takes values in Homy (A?(g/h),h). By Exercise 3.4.6(c)
this is a one-dimensional vector space, so the curvature must have the form,

2= (g (co,.?\oj))

’.I‘hus7 the curvature function is K (p) = 3 c(p)el A e; ® eij, where ¢ = ¢(p)
is some functzlon on P. The case of n = dim g/h = 2 is somewhat special
since Hom(A\?(g/h), h) = Homy(A2%(g/h),h), so it is no condition at all to

In this section we study the special geometries for which W (K) = ro(K )=
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say the curvature takes values in this submodule. However, if we avoid this
case, we can prove that the curvature function is constant as follows.

Lemma 4.1. Suppose the curvature function for a Riemannian geometry
takes values in Homg(X*(g/h),h). If n > 3, then the curvature function is

constant.

Proof. This is an application of the Bianchi identity d$2 = [, w], which in
this case reads

d(g C((’i?\(’j))ng C((’i?\(’j)>’((gi) (9(;‘))]

0 0
a < e (0: N Ok AOrj — O N NB;) )

Since the geometry is torsion free, df; = — 3 0k A Oki, so the Bianchi
identity reads, for each i, j,

d(CGz N 91) = C(—-gi A d0] + dgz A 9]) = Cd(gi N 9])

Hence (dc) A0; A0; =0 for all 4,75 and so, if n > 3, then dc = 0 and c is
constant. | |

A Riemannian space form is a complete Riemannian geometry with con-
stant sectional curvature. (We take here the definition of completeness
described in Definition 5.3.1. This implies the completeness of geodesics,
which is the classical notion of completeness.) By Proposition 4.5, a Rie-
mannian space form is a Cartan space form whose model is Euclidean space
(cf. §4 of Chapter 5). Of course this case is simpler than the general one
in that the coefficients of the curvature function are not only constant (cf.
Lemma 5.6.7), they are all equal. For n > 2 this follows from Lemma 4.1,
while for n = 2 there is only one coefficient. We are going to describe the
universal cover of a Riemannian space form.

Proposition 4.2. Let M™, n > 2, be a Riemannian space form of curvature
c. Let M be the universal cover of M.

(i) If c=0, M = Eucn(R)/On(R) (Euclidean n-space)
(ii) If ¢ >0, M = On41(R)/On(R) (the n-sphere)
(iii) Ifec <O, M = 0, »(R)/On(R) (hyperbolic n-space).
Proof. Since the property of having a constant curvature function is local,
the universal cover M also has constant curvature. Moreover the property

of completeness for M passes to completeness for the universal cover. Thus
M is also a Riemannian space form. If ¢ = 0 then M is flat and hence it
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is the model space Euc,(R)/O,(R). Suppose that ¢ # 0. Then we have
model mutations

eucn,(R) — 0p,01(R) if ¢ >0 and euc,(R) — 01,(R)ifc<0

0 0 0 —cvt 0 0 0 cvt
(v A>H<cv A) <'u A)H(cv A)
By Proposition ?.6.4(i) and (ii) both of these mutated geometries are flat
and complete. Since they are also simply connected they are geometrically

orientable (Exercise 5.4.9) and so, by Theorem 5.5.4, they are as described
in (ii) and (iii) above. ]

Sectional Curvature

Ifl this subsection we relate the previous results of this section to the clas-
sical notion of a manifold with constant sectional curvature.

Exercise 4.3. Let M be a Riemannian manifold and let V C T,(M) be a
2-plane. Choose

(i) an orthonormal basis e, f € V,
(ii) a point p € P lying over z,
(iii) lifts &, f € T,(P) lying over e and f.

Show that the number R(e, /) = (ad(K (p) (wp(&), wp()))wp(2), wp(f)) de-
pends only on the (unoriented) 2-plane V. In particular, it is independent
of the choices in (i), (ii), and (iii). Q

Let Grp(T'(M)) denote the Grassman bundle of oriented 2-planes in the
tangent bundle of M. Exercise 4.3 justifies the following definition.

Definition 4.4. Sectional curvature is the function R: Gra(T(M)) — R
defined in Exercise 4.3. A Riemannian geometry is said to have constant
sectional curvature c at x € M if R(V') = c for every 2-plane V C T,(M). A
Riemannian geometry has constant sectional curvature c if R is the constant
function with value ¢ on Gra(T'(M)). ®

Proposition 4.5. The following are equivalent.
(i) A Riemannian geometry has constant sectional curvature ¢ atx € M.

(i) K(p) =c3 ic;€f Nej ®eij (c € R) on the fiber over x.

Proof. Let p = 3, ef Nej@eyy = 3¢ 1, €] Nej @ei; € Homy (\(g/h),

H)p. Then for orthonormal vectors v, = Zk axek, Vg = El bie;, we have
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(ad(p(v1 A v2))v2,v1)
= Z arbiasbi(ad(p(ex A er))es, es)

klst
1
= §c Z arbasbi{ad(e; A e;-‘(ek Aep) ® eg)et, es)
ijklst
1
=3¢ Z arbiashy(8:x651 — 6316,k )(ad(ex)er, es)
ijklst
1
=5¢ Z arbiasbe(6ikbj1 — 6abjk)(bier — Oxeer, €s)
i7klst
1 1
=3¢ > akbiagbibid;i81ebs — 2¢ > arbiabbikd;ibkebis
ijklst ikjlst
1 1
=3¢ D kbisbiBubikbubis + 5¢ D arbiasbibubsnduiis
ijklst ijklst

= %cZaibjaibj - %cZaibjajb,- - %cZajbiajbi + %cZajbiaibj
iJ ij i ij
= CZ afb?- - cZaibia]—b]—
iJ iJ
= CZ(I?Z()? —cZaibiZajbj
i J i j

=c.
Thus (i) is equivalent to the statement:
(ad(K (p) (wp(€), wp(f))wp (&), wp(f)) = ¢

for any orthonormal vectors €, f € w, (p). This, in turn, is equivalent to
the statement: (ad(K(p)(vi A v2)vy,ve) = ¢ for every pair of orthonormal
vectors v1,v2 € p. But by Proposition 1.8(ii), ad(K(p)) is determined by
this formula, so we must have ad(K(p)) = cp. |

§5. Subgeometry of a Riemannian Geometry

Suppose we are given a Riemannian manifold N**" and an immersion
f:M™ — N™7 with normal bundle v (cf. Exercise 5.7). Our main aim
in this section is to describe (Pf,wy), t